Targeted Oncology

, Volume 9, Issue 1, pp 25–42 | Cite as

Caffeic acid phenylethyl ester and MG132, two novel nonconventional chemotherapeutic agents, induce apoptosis of human leukemic cells by disrupting mitochondrial function

  • Victoria CavaliereEmail author
  • Daniela L. Papademetrio
  • Tomás Lombardo
  • Susana N. Costantino
  • Guillermo A. Blanco
  • Elida M. C. Álvarez
Original Research


The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.


Apoptosis Caffeic acid phenylethyl ester (CAPE) MG132 Mitochondria Leukemia 



Caffeic acid phenylethyl ester








Fetal calf serum


Propidium iodide




Mitochondrial membrane potential


Reactive oxygen species


Hydrogen peroxide


Acridine orange


Ethidium bromide


Inhibitory apoptotic proteins


Mitochondrial membrane permeabilization


X-linked inhibitor of apoptosis


Cellular inhibitor of apoptosis protein 1


Cellular inhibitor of apoptosis protein 2


Acute myeloid leukemia


Acute lymphoblastic leukemia


Chronic myeloid leukemia


Chronic lymphoblastic leukemia



The authors thank Dr. Daniela Ureta (Servicio de Citometría de flujo, Departamento de Microbiología, Inmunología y Biotecnología, Fac. de Fcia. y Bioq., UBA, Argentina) for technical assistance and UBA and CONICET for financial support.

Conflict of interest



  1. 1.
    Li X, Gong J, Feldman E, Seiter K, Traganos F, Darzynkiewicz Z (1993) Apoptotic cell death during treatment of leukemias. Leukemia 7:659–670Google Scholar
  2. 2.
    Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exper Cell Res 256:42–49CrossRefGoogle Scholar
  3. 3.
    Friesen C, Lubatschofki A, Kotzerke J, Buchmann I, Reske SN, Debatin K (2003) Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Im 30:1251–1261CrossRefGoogle Scholar
  4. 4.
    Taraphdar AK, Roy M, Bhattacharya RK (2001) Natural products as inducers of apoptosis: implications for cancer therapy and prevention. Curr Sci 80:1387–1396Google Scholar
  5. 5.
    Milner AE, Palmer DH, Hodgkin EA, Eliopoulos AG, Knox PG, Poole CJ, Kerr DJ, Young LS (2002) Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ 9:287–300PubMedCrossRefGoogle Scholar
  6. 6.
    Somervaille TC, Linch DC, Khwaja A (2001) Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98:1374–1381PubMedCrossRefGoogle Scholar
  7. 7.
    Santiniab MT, Rainaldi G, Indovina PL (2000) Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Oncol Hemat 36:75–87Google Scholar
  8. 8.
    Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2010) Mitochondrial gateways to cancer. Mol Aspects Med 31:1–20PubMedCrossRefGoogle Scholar
  9. 9.
    Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J, Kohn KW (1994) Inhibition of HIV integrase by flavones, caffeic phenethyl acid and related compounds. Biochem Pharmacol 48:595–608PubMedCrossRefGoogle Scholar
  10. 10.
    Bankova V, Christov R, Kujumgiev A, Marcucci MC, Popov S (1995) Chemical composition and antibacterial activity of Brazilian propolis. Z Naturforsch [C] 50:167–172Google Scholar
  11. 11.
    Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:168–178CrossRefGoogle Scholar
  12. 12.
    Orsolic N, Sver L, Terzic S, Tadic Z, Basic L (2003) Inhibitory effect of water-soluble derivatives of propolis and its polyphenolic compounds on tumor growth and metastasizing ability: a possible mode of antitumor action. Nut Cancer 47:156–163CrossRefGoogle Scholar
  13. 13.
    Watabe M, Hishikawa K, Takayanagi A, Shimizu N, Nakaki T (2004) Caffeic acid phenethyl ester induces apoptosis by inhibition of NFκB and activation of Fas in human breast cancer MCF–7 cells. J Biol Chem 279:6017–6026PubMedCrossRefGoogle Scholar
  14. 14.
    Mc Eleny K, Coffrey R, Morrissey C, Fitzapatrick JM, Watson WG (2004) Caffeic acid phenethyl ester-induced PC–3 cell apoptosis is caspase–dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int 94:402–406CrossRefGoogle Scholar
  15. 15.
    Xiang D, Wong D, He Y, Xie J, Zhong Z, Liz Z, Xie J (2006) Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the [beta]-catenin/T-cell factor signaling. Anti-Cancer Drugs 17:753–762PubMedCrossRefGoogle Scholar
  16. 16.
    Cavaliere V, Papademetrio D, Lorenzetti M, Valva P, Preciado MV, Larripa I, Monreal MB, Pardo ML, Hajos SE, Blanco G, Álvarez E (2009) CAPE and MG–132 have apoptotic and antiproliferative effects on leukemic cells but not on normal mononuclear cells. Trans Oncol 2:46–58CrossRefGoogle Scholar
  17. 17.
    Ha J, Choi HS, Lee Y, Lee ZH, Kim HH (2009) Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF–κB and downregulating NFATc1 and c–Fos. Int Immunopharmacol 9:774–780PubMedCrossRefGoogle Scholar
  18. 18.
    Yuan BZ, Chapman JA, Reynolds ST (2008) Proteasome Inhibitor MG132 induces apoptosis and inhibits invasion of human malignant pleural mesothelioma cells. Transl Oncol 1:129–140PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Letoha T, Somlaia C, Taka’csb T, Szabolcsb A, Rakonczay ZJ, Ja’rmayb K, Szalontaic T, Vargad I, Kaszakie J, Borosf I, Dudaf E, Hacklerg L, Kuruczh I, Penkea B (2005) The proteasome inhibitor MG132 protects against acute pancreatitis. Free Radical Biol Med 39:1142–1151CrossRefGoogle Scholar
  20. 20.
    Ustundag Y, Bronk SF, Gores GJ (2007) Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World J Gastroenterol 13:851–857PubMedGoogle Scholar
  21. 21.
    Xingming D, Fengqin G, Stratford May WG (2003) Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102:3179–3185CrossRefGoogle Scholar
  22. 22.
    Alaniz L, García MG, Cabrera P, Arnaiz M, Cavaliere V, Blanco G, Álvarez E, Hajos S (2004) Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-κB activity in lymphoma cell lines with dissimilar invasive behavior. Biochem Biophys Res Commun 324:736–743PubMedCrossRefGoogle Scholar
  23. 23.
    Bustamante J, Caldas Lopes E, Garcia M, Di Libero E, Álvarez E, Hajos SE (2004) Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug resistant lymphoid leukemia. Toxicol Appl Pharmacol 199:44–51PubMedCrossRefGoogle Scholar
  24. 24.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421PubMedCrossRefGoogle Scholar
  25. 25.
    Naujokat C, Sezer O, Zinke H, Leclere A, Hauptmann S, Possinger K (2000) Proteasome inhibitors induce caspase–dependent apoptosis and accumulation of 21WAF1/Cip1 in human immature leukemic cells. Eur J Haematol 65:221–236PubMedCrossRefGoogle Scholar
  26. 26.
    Li W, Zhang X, Olumi AF (2007) MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIP(L). Cancer Res 67:2247–2252PubMedCrossRefGoogle Scholar
  27. 27.
    Lin YH, Chiu JH, Tseng EWS, Wong TT, Chiou ESH, Yen ESH (2006) Antiproliferation and radiosensitization of caffeic acid phenethyl ester on human medulloblastoma cells. Cancer Chemother Pharmacol 57:525–532PubMedCrossRefGoogle Scholar
  28. 28.
    Chen MJ, Chang WH, Lin CC, Liu CY, Wang TE, Chu CH, Shih SC, Chen YJ (2008) Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 8:566–576PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR (2000) The ubiquitin–proteasome pathway; regulates survivin degradation in a cell cycle–dependent manner. J Cell Sci 13:4363–4371Google Scholar
  30. 30.
    Kirkland RA, Franklin JL (2001) Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. Neurosci 21:1949–1963Google Scholar
  31. 31.
    Estéve MA, Carré M, Braguer D (2007) Microtubules in apoptosis induction: are they necessary? Curr Cancer Drug Targets 7:713–729PubMedCrossRefGoogle Scholar
  32. 32.
    Zanotto-Filho A, Delgado-Cañedo A, Schröder R, Becker M, Klamt, Moreira JC (2010) The pharmacological Nfkappa B inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS–mitochondria pathway activation. Cancer Lett 288:192–203PubMedCrossRefGoogle Scholar
  33. 33.
    Emanuele S, Calvaruso G, Lauricella M, Giuliano M, Bellavia G, D'Anneo A, Vento R, Tesoriere G (2002) Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl-XS and activation of caspase 3. Int J Oncol 21:857–865PubMedGoogle Scholar
  34. 34.
    Bernardi P, Scorrano L, Colonna R, Petronilli N, Di Lisa F (1999) Mitochondria and cell death. Eur J Biochem 264:687–701PubMedCrossRefGoogle Scholar
  35. 35.
    Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death and Differ 13:1423–1433CrossRefGoogle Scholar
  36. 36.
    Nagy K, Szekely-Szuts K, Izeradjene K, Douglas L, Tillman M, Barti-Juhasz H, Dominici M, Spano C, Luca CG, Conte P (2006) Proteasome inhibitors sensitize colon carcinoma cells to TRAIL–induced apoptosis via enhanced release of Smac/DIABLO from the mitochondria. Pathol Oncol Res 12:133–142PubMedCrossRefGoogle Scholar
  37. 37.
    MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277:36611–36616PubMedCrossRefGoogle Scholar
  38. 38.
    Adrain C, Creagh EM, Martin SJ (2001) Apoptosis–associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl–2. EMBO 20:6627–6636CrossRefGoogle Scholar
  39. 39.
    Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, Carl Barrett J (1995) Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res 55:3576–3583PubMedGoogle Scholar
  40. 40.
    Kudugunti SK, Vad NM, Ekogbo E, Moridani MY (2009) Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16–F0 melanoma tumor bearing C57BL/6 mice. Invest New Drugs 29:52–62PubMedCrossRefGoogle Scholar
  41. 41.
    Han YH, Park WH (2010) MG-132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level. Hum Exp Toxicol 29:607–614PubMedCrossRefGoogle Scholar
  42. 42.
    Shi R, Huang CC, Aronstam RS, Ercal N, Martin A, Huang YW (2009) N–acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes. BMP Pharmacol 9:7Google Scholar
  43. 43.
    Lombardo T, Cavaliere V, Costantino SN, Kornblihtt L, Alvarez EM, Blanco GA (2012) Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion. Toxicol Appl Pharmacol 258:351–366PubMedCrossRefGoogle Scholar
  44. 44.
    Lombardo T, Anaya L, Kornblihtt L, Blanco G (2012) Median effect dose and combination index analysis of cytotoxic drugs using flow cytometry. Intech Open Publisher Rijeka, Croatia, pp 393–418Google Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Victoria Cavaliere
    • 1
    Email author
  • Daniela L. Papademetrio
    • 1
  • Tomás Lombardo
    • 2
  • Susana N. Costantino
    • 1
  • Guillermo A. Blanco
    • 2
  • Elida M. C. Álvarez
    • 1
  1. 1.Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y BioquímicaUniversidad de Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San MartínUniversidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations