Targeted Oncology

, Volume 8, Issue 3, pp 189–201 | Cite as

Is 1,25-dihydroxyvitamin D3 receptor expression a potential Achilles’ heel of CD44+ oral squamous cell carcinoma cells?

  • Martin Grimm
  • Dorothea Alexander
  • Adelheid Munz
  • Juergen Hoffmann
  • Siegmar Reinert
Original Research

Abstract

The aim of this study was to analyse the expression of 1,25-dihydroxyvitamin D3 receptor (VDR) in oral cancers are squamous cell carcinomas (OSCC) to evaluate whether oral tissue may be a new potential target for biologically active 1,25-(OH)2D3 or its analogues. Expression of VDR was analysed in OSCC specimen (n = 191) and cancer cell lines (BICR3, BICR56) by immunohistochemistry, real-time polymerase chain reaction (RT-PCR) analysis, and Western blotting. Scanned images were digitally analysed using ImageJ and the immunomembrane plug-in. VDR expression on protein level was correlated with proliferation marker Ki-67, clinical characteristics and impact on survival. VDR was co-labelled with CD44 and Ki-67 in double labeling experiments. Expression subgroups were identified by receiver operating characteristics (ROC) analysis. Low VDR expression was significantly associated with recurrence of the tumour. Multivariate analysis demonstrated low VDR expression as an independent prognostic factor (p = 0.0005). Immunohistochemical double staining revealed VDR expression by CD44+ cancer cells. An inverse correlation of VDR+ expressing cancer cells with Ki-67 has been found, which was indicated by immunofluorescence double labeling. VDR specificity was confirmed by Western blot and RT-PCR analysis. For the first time, our study provides evidence that decreased VDR expression in OSCC might be associated with tumour relapse. Tumour cells of a putative CD44+ cancer stem cell compartment express VDR indicating a potential Achilles’ heel for the treatment of OSCC although, our results do not allow any conclusion on the function of VDR. Adjuvant chemoprevention by using 1,25-(OH)2D3 or its analogues can be a successful tool targeting adjuvant residual tumour cells and will likely help therapeutic optimization for cancer patients in the clinic. However, this hypothesis requires further in vitro and in vivo studies.

Keywords

Prognostic factors Vitamin D receptor Oral squamous cell carcinoma Cancer stem cell hypothesis 

Abbreviation

OSCC

Oral squamous cell carcinoma

HNSCC

Head and neck squamous cell carcinoma

HE

Hematoxylin and eosin

ROC

Receiver operating characteristics analysis

AUC

Area under the curve analysis

References

  1. 1.
    Parkin DM, Laara E, Muir CS (1988) Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer 41(2):184–197PubMedCrossRefGoogle Scholar
  2. 2.
    da Silva SD, Ferlito A, Takes RP, Brakenhoff RH, Valentin MD, Woolgar JA, Bradford CR, Rodrigo JP, Rinaldo A, Hier MP, Kowalski LP (2011) Advances and applications of oral cancer basic research. Oral Oncol 47(9):783–791. doi:10.1016/j.oraloncology.2011.07.004 PubMedCrossRefGoogle Scholar
  3. 3.
    Yu Y, Ramena G, Elble RC (2012) The role of cancer stem cells in relapse of solid tumours. Front Biosci (Elite Ed) 4:1528–1541Google Scholar
  4. 4.
    Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9. doi:10.1007/s10911-009-9109-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978. doi:10.1073/pnas.0610117104 PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Z, Filho MS, Nor JE (2012) The biology of head and neck cancer stem cells. Oral Oncol 48(1):1–9. doi:10.1016/j.oraloncology.2011.10.004 PubMedCrossRefGoogle Scholar
  7. 7.
    Tobias JS (1990) Has chemotherapy proved itself in head and neck cancer? Br J Cancer 61(5):649–651PubMedCrossRefGoogle Scholar
  8. 8.
    Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, Giralt J, Maingon P, Rolland F, Bolla M, Cognetti F, Bourhis J, Kirkpatrick A, van Glabbeke M (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 350(19):1945–1952. doi:10.1056/NEJMoa032641350/19/1945 PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, Kish JA, Kim HE, Cmelak AJ, Rotman M, Machtay M, Ensley JF, Chao KS, Schultz CJ, Lee N, Fu KK (2004) Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 350(19):1937–1944. doi:10.1056/NEJMoa032646350/19/1937 PubMedCrossRefGoogle Scholar
  10. 10.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499 PubMedCrossRefGoogle Scholar
  11. 11.
    Garland C, Shekelle RB, Barrett-Connor E, Criqui MH, Rossof AH, Paul O (1985) Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet 1(8424):307–309PubMedCrossRefGoogle Scholar
  12. 12.
    Colston K, Colston MJ, Feldman D (1981) 1,25-Dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 108(3):1083–1086PubMedCrossRefGoogle Scholar
  13. 13.
    Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T (1981) Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A 78(8):4990–4994PubMedCrossRefGoogle Scholar
  14. 14.
    Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M, Munoz A (2001) Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154(2):369–387PubMedCrossRefGoogle Scholar
  15. 15.
    Vink-van Wijngaarden T, Pols HA, Buurman CJ, Birkenhager JC, van Leeuwen JP (1996) Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analogue EB1089. Eur J Cancer 32A(5):842–848PubMedCrossRefGoogle Scholar
  16. 16.
    Park WH, Seol JG, Kim ES, Jung CW, Lee CC, Binderup L, Koeffler HP, Kim BK, Lee YY (2000) Cell cycle arrest induced by the vitamin D(3) analog EB1089 in NCI-H929 myeloma cells is associated with induction of the cyclin-dependent kinase inhibitor p27. Exp Cell Res 254(2):279–286. doi:10.1006/excr.1999.4735 PubMedCrossRefGoogle Scholar
  17. 17.
    Skowronski RJ, Peehl DM, Feldman D (1993) Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 132(5):1952–1960PubMedCrossRefGoogle Scholar
  18. 18.
    Kornfehl J, Formanek M, Temmel A, Knerer B, Willheim M (1996) Antiproliferative effects of the biologically active metabolite of vitamin D3 (1,25 [OH]2D3) on head and neck squamous cell carcinoma cell lines. Eur Arch Otorhinolaryngol: Off J Eur Fed Otorhinolaryngol Soc 253(6):341–344Google Scholar
  19. 19.
    Meier JD, Enepekides DJ, Poirier B, Bradley CA, Albala JS, Farwell DG (2007) Treatment with 1-alpha,25-dihydroxyvitamin D3 (vitamin D3) to inhibit carcinogenesis in the hamster buccal pouch model. Arch Otolaryngol Head Neck Surg 133(11):1149–1152. doi:10.1001/archotol.133.11.1149 PubMedCrossRefGoogle Scholar
  20. 20.
    Kulbersh JS, Day TA, Gillespie MB, Young MR (2009) 1alpha,25-Dihydroxyvitamin D(3) to skew intratumoural levels of immune inhibitory CD34(+) progenitor cells into dendritic cells. Otolaryngol Head Neck Surg: Off J Am Acad Otolaryngol Head Neck Surg 140(2):235–240. doi:10.1016/j.otohns.2008.11.011 CrossRefGoogle Scholar
  21. 21.
    Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer J Inter du Cancer 74(1):69–74CrossRefGoogle Scholar
  22. 22.
    Lu L, Qiu J, Liu S, Luo W (2008) Vitamin D3 analogue EB1089 inhibits the proliferation of human laryngeal squamous carcinoma cells via p57. Mol Cancer Ther 7(5):1268–1274. doi:10.1158/1535-7163.MCT-07-2222 PubMedCrossRefGoogle Scholar
  23. 23.
    Hager G, Kornfehl J, Knerer B, Weigel G, Formanek M (2004) Molecular analysis of p21 promoter activity isolated from squamous carcinoma cell lines of the head and neck under the influence of 1,25(OH)2 vitamin D3 and its analogs. Acta Otolaryngol 124(1):90–96PubMedCrossRefGoogle Scholar
  24. 24.
    Satake K, Takagi E, Ishii A, Kato Y, Imagawa Y, Kimura Y, Tsukuda M (2003) Anti-tumour effect of vitamin A and D on head and neck squamous cell carcinoma. Auris, nasus, larynx 30(4):403–412PubMedCrossRefGoogle Scholar
  25. 25.
    Prudencio J, Akutsu N, Benlimame N, Wang T, Bastien Y, Lin R, Black MJ, Alaoui-Jamali MA, White JH (2001) Action of low calcemic 1alpha,25-dihydroxyvitamin D3 analogue EB1089 in head and neck squamous cell carcinoma. Journal of the National Cancer Institute 93(10):745–753PubMedCrossRefGoogle Scholar
  26. 26.
    So JY, Lee HJ, Smolarek AK, Paul S, Wang CX, Maehr H, Uskokovic M, Zheng X, Conney AH, Cai L, Liu F, Suh N A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. doi:10.1124/mol.110.068403
  27. 27.
    Kumagai T, O'Kelly J, Said JW, Koeffler HP (2003) Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumour activity against leukemia, myeloma, and colon cancer cells. J Natl Cancer Inst 95(12):896–905PubMedCrossRefGoogle Scholar
  28. 28.
    Sobin LH, Wittekind CH (2010) UICC. TNM classification of malignant tumours, 7th edn. Springer Verlag, BerlinGoogle Scholar
  29. 29.
    Hamilton SR, Aaltonen LA (2000) Pathology and Ggenetics. Tumours of the digestive system, 3rd edn. IARC Press, LyonGoogle Scholar
  30. 30.
    von Rahden BH, Kircher S, Kafka M, Stuermer L, Reiber C, Gattenlohner S, Germer CT, Grimm M (2010) Glucocorticoid-induced TNFR family-related receptor (GITR)-expression in tumour infiltrating leucocytes (TILs) is associated with the pathogenesis of esophageal adenocarcinomas with and without Barrett’s mucosa. Canc Biomarkers: Sec A Dis Markers 7(6):285–294. doi:10.3233/CBM-2010-0192 Google Scholar
  31. 31.
    Grimm M, Lazariotou M, Kircher S, Stuermer L, Reiber C, Hofelmayr A, Gattenlohner S, Otto C, Germer CT, von Rahden BH (2010) MMP-1 is a (pre-)invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status. J Transl Med 8:99. doi:10.1186/1479-5876-8-99 PubMedCrossRefGoogle Scholar
  32. 32.
    Alexander D, Hoffmann J, Munz A, Friedrich B, Geis-Gerstorfer J, Reinert S (2008) Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. J Mater Sci Mater Med 19(3):965–974. doi:10.1007/s10856-007-3351-8 PubMedCrossRefGoogle Scholar
  33. 33.
    Alexander D, Schafer F, Olbrich M, Friedrich B, Buhring HJ, Hoffmann J, Reinert S (2010) MSCA-1/TNAP selection of human jaw periosteal cells improves their mineralization capacity. Cell Physiol Biochem 26(6):1073–1080. doi:10.1159/000323985 PubMedCrossRefGoogle Scholar
  34. 34.
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577PubMedGoogle Scholar
  35. 35.
    Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 75:457–487CrossRefGoogle Scholar
  36. 36.
    Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50(3):163–170PubMedGoogle Scholar
  37. 37.
    Cox DR (1972) Regression models and life tables. J R Stat Soc 34:1987–2001Google Scholar
  38. 38.
    Reichrath J, Rafi L, Muller SM, Mink D, Reitnauer K, Tilgen W, Schmidt W, Friedrich M (1998) Immunohistochemical analysis of 1,25-dihydroxyvitamin D3 receptor in cervical carcinoma. Histochem J 30(8):561–567PubMedCrossRefGoogle Scholar
  39. 39.
    Mack B, Gires O (2008) CD44s and CD44v6 expression in head and neck epithelia. PLoS One 3(10):e3360. doi:10.1371/journal.pone.0003360 PubMedCrossRefGoogle Scholar
  40. 40.
    Harper LJ, Costea DE, Gammon L, Fazil B, Biddle A, Mackenzie IC (2010) Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer 10:166. doi:10.1186/1471-2407-10-166 PubMedCrossRefGoogle Scholar
  41. 41.
    Mackenzie IC (2004) Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J Oral Pathol Med: Official Publ Int Assoc J Oral Pathol Am Acad Oral Pathol 33(2):71–78CrossRefGoogle Scholar
  42. 42.
    Richard V, Pillai MR (2010) The stem cell code in oral epithelial tumourigenesis: ‘the cancer stem cell shift hypothesis’. Biochim Biophys Acta 1806(2):146–162. doi:10.1016/j.bbcan.2010.06.004 PubMedGoogle Scholar
  43. 43.
    Zeljic K, Supic G, Stamenkovic Radak M, Jovic N, Kozomara R, Magic Z (2012) Vitamin D receptor, CYP27B1 and CYP24A1 genes polymorphisms association with oral cancer risk and survival. J Oral Pathol Med Off Pub Int Assoc Oral Pathol Am Acad Oral Pathol. doi:10.1111/j.1600-0714.2012.01164.x
  44. 44.
    Costa EM, Feldman D (1987) Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology 120(3):1173–1178PubMedCrossRefGoogle Scholar
  45. 45.
    Wiese RJ, Uhland-Smith A, Ross TK, Prahl JM, DeLuca HF (1992) Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem 267(28):20082–20086PubMedGoogle Scholar
  46. 46.
    Mangelsdorf DJ, Pike JW, Haussler MR (1987) Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation. Proc Natl Acad Sci U S A 84(2):354–358PubMedCrossRefGoogle Scholar
  47. 47.
    Lehmann B (1997) HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J Investig Dermatol 108(1):78–82PubMedCrossRefGoogle Scholar
  48. 48.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776. doi:10.1210/er.2008-0004 PubMedCrossRefGoogle Scholar
  49. 49.
    Pillai S, Bikle DD, Elias PM (1988) 1,25-Dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation. J Biol Chem 263(11):5390–5395PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Martin Grimm
    • 1
  • Dorothea Alexander
    • 1
  • Adelheid Munz
    • 1
  • Juergen Hoffmann
    • 1
    • 2
  • Siegmar Reinert
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryUniversity Hospital TuebingenTuebingenGermany
  2. 2.Department of Oral and Maxillofacial SurgeryUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations