Targeted Oncology

, Volume 7, Issue 2, pp 99–106

New targeted agents in gastroenteropancreatic neuroendocrine tumors

  • Marta Benavent
  • Maria Jose de Miguel
  • Rocio Garcia-Carbonero
Review

Abstract

Neuroendocrine carcinomas are rare neoplasms although of increasing incidence and concern. While traditionally considered of indolent nature, once they progress beyond surgical resectability, the outcome is ultimately fatal for the majority of patients. Somatostatin analogs are useful to control symptoms in functioning tumors and may slow tumor progression in certain disease settings, but sensitivity to conventional cytotoxic chemotherapy is rather limited. In this context, results of the recently published randomized trials with sunitinib and everolimus have demonstrated for the first time that there are agents able to positively impact on the natural history of this complex disease. In this review, we will discuss available data on angiogenesis and mammalian target of rapamycin inhibitors for the treatment of advanced well-differentiated gastroenteropancreatic neuroendocrine tumors.

Keywords

Targeted agents Neuroendocrine Gastroenteropancreatic Therapy Everolimus Sunitinib 

References

  1. 1.
    Yao JC, Hassan M, Phan A et al (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia-Carbonero R, Capdevila J, Crespo-Herrero G et al (2010) Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol 21:1794–1803PubMedCrossRefGoogle Scholar
  3. 3.
    Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72PubMedCrossRefGoogle Scholar
  4. 4.
    Oberg K (2009) Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors. Curr Opin Endocrinol Diabetes Obes Feb 16(1):72–78CrossRefGoogle Scholar
  5. 5.
    García-Carbonero R, Salazar R, Sevilla I, Isla D (2011) SEOM clinical guidelines for the diagnosis and treatment of gastroenteropancreatic neuroendocrine tumours (GEP NETS). Clin Transl Oncol 13:545–551PubMedCrossRefGoogle Scholar
  6. 6.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027PubMedCrossRefGoogle Scholar
  7. 7.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang J, Jia Z, Li Q et al (2007) Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109(8):1478–1486PubMedCrossRefGoogle Scholar
  9. 9.
    Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23(5):939–952PubMedCrossRefGoogle Scholar
  10. 10.
    Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35PubMedCrossRefGoogle Scholar
  11. 11.
    Kulke MH, Lenz HJ, Meropol NJ et al (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26:3403–3410PubMedCrossRefGoogle Scholar
  12. 12.
    Raymond E, Dahan L, Raoul JL et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513PubMedCrossRefGoogle Scholar
  13. 13.
    Yao JC, Phan A, Hoff PM et al (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alfa-2b. J Clin Oncol 26:1316–1323PubMedCrossRefGoogle Scholar
  14. 14.
    Yao JC, Phan A, Fogleman D (2010) Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol 28(15):4002Google Scholar
  15. 15.
    Hobday TJ, Rubin J, Holen K et al (2007) MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a phase II consortium (P2C) study. J Clin Oncol (Meeting Abstracts) 25(18_suppl):4504Google Scholar
  16. 16.
    Castellano D, Capdevila J, Salazar R et al (2010) Neuroendocrine tumors. Ann Oncol 21(suppl 8):850, AbstractGoogle Scholar
  17. 17.
    Phan AT, Yao JC, Fogelman KR et al (2010) A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J Clin Oncol 28:15s (suppl; abstr 4001)CrossRefGoogle Scholar
  18. 18.
    Capdevila J, Teule DE, Castellano D et al (2011) PAZONET: a phase II trial of pazopanib in patients with metastatic neuroendocrine tumors (NETs) who may have previously received antiangiogenic or mTOR treatment. J Clin Oncol 29 (suppl; abstr TPS171)Google Scholar
  19. 19.
    García-Carbonero R, Castellano D, Lacasta A et al (2012) Randomized phase II double-blind study of axitinib versus placebo in combination with octeotride LAR in patients with progressive advanced well-differentiated (WD) neuroendocrine carcinomas (NECs) of non-pancreatic origin (AXI-IIG-02). J Clin Oncol 30 (suppl; abstr TPS)Google Scholar
  20. 20.
    Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8(2):128–135PubMedCrossRefGoogle Scholar
  21. 21.
    Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203PubMedCrossRefGoogle Scholar
  22. 22.
    Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27(13):2278–2287PubMedCrossRefGoogle Scholar
  23. 23.
    Oberstein PE, Saif MW (2012) Safety and efficacy of everolimus in adult patients with neuroendocrine tumors. Clin Med Insights Oncol 6:41–51PubMedGoogle Scholar
  24. 24.
    Moreno A, Akcakanat A, Munsell MF et al (2008) Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors. Endocr Relat Cancer 15(1):257–266PubMedCrossRefGoogle Scholar
  25. 25.
    Duran I, Kortmansky J, Singh D et al (2006) A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 95:1148–1154PubMedCrossRefGoogle Scholar
  26. 26.
    Yao JC, Phan AT, Chang DZ et al (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26:4311–4318PubMedCrossRefGoogle Scholar
  27. 27.
    Yao JC, Lombard-Bohas C, Baudin E et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28:69–76PubMedCrossRefGoogle Scholar
  28. 28.
    Pavel ME, Hainsworth JD, Baudin E et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378:2005–2012PubMedCrossRefGoogle Scholar
  29. 29.
    Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marta Benavent
    • 1
  • Maria Jose de Miguel
    • 1
  • Rocio Garcia-Carbonero
    • 1
  1. 1.Department of Medical Oncology, Hospital Universitario Virgen del RocíoInstituto de Biomedicina de Sevilla (IBIS) [HUVR, CSIC, Universidad de Sevilla]SevillaSpain

Personalised recommendations