Targeted Oncology

, Volume 7, Issue 2, pp 93–98

Relevance of angiogenesis in neuroendocrine tumors

Review

Abstract

While traditional cytotoxic drugs have shown limited efficacy in neuroendocrine tumors (NETs), their biological features have been characterized and can be exploited therapeutically. Their most prominent trait is an extraordinary vascularization in low-grade NETs and an hypoxia-dependent angiogenesis in high-grade NETs, which is associated to a significant expression of many proangiogenic molecules. Therefore, several antiangiogenic compounds have been tested in these malignancies, and among these, sunitinib has demonstrated activity in pancreatic NET patients by dually targeting the VEGFR and PDGFR pathways. In spite of these efficacious clinical results, apparent resistance to antiangiogenic therapies has been described in NET animal models and in clinical trials. Therefore, overcoming antiangiogenic resistance is a crucial step in the subsequent development of antiangiogenic therapies. Several strategies have been postulated to fight resistance, but preclinical studies and clinical trials will investigate and address these therapeutic approaches in the coming years in order to overcome resistance to antiangiogenic therapies in NETs.

Keywords

Neuroendocrine tumor Angiogenesis Sunitinib Molecular target 

References

  1. 1.
    Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072PubMedCrossRefGoogle Scholar
  2. 2.
    Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, Belghiti J, Fléjou J, Degott C (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32:133–138PubMedCrossRefGoogle Scholar
  3. 3.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Canc Cell 8:299–309CrossRefGoogle Scholar
  4. 4.
    Couvelard A, O’Toole D, Turley H, Leek R, Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter K, Pezzella F (2005) Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer 92(1):94–101PubMedCrossRefGoogle Scholar
  5. 5.
    Marion-Audibert AM, Barel C, Gouysse G, Dumortier J, Pilleul F, Pourreyron C, Hervieu V, Poncet G, Lombard-Bohas C, Chayvialle JA, Partensky C, Scoazec JY (2003) Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology 125:1094–1104PubMedCrossRefGoogle Scholar
  6. 6.
    Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F, Ruszniewski P, Bedossa P (2008) Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res 14:6634–6639PubMedCrossRefGoogle Scholar
  7. 7.
    Konstantinova I, Lammert E (2004) Microvascular development: learning from pancreatic islets. Bioessays 26:1069–1075PubMedCrossRefGoogle Scholar
  8. 8.
    Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812PubMedCrossRefGoogle Scholar
  9. 9.
    Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122PubMedCrossRefGoogle Scholar
  10. 10.
    Parangi S, Dietrich W, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D et al (1995) Tumor suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumorigenesis in a transgenic model of islet cell carcinoma. Cancer Res 55:6071–6076PubMedGoogle Scholar
  11. 11.
    Varker KA, Campbell J, Shah MH (2008) Phase II study of thalidomide in patients with metastatic carcinoid and islet cell tumors. Canc Chemother Pharmacol 61:661–668CrossRefGoogle Scholar
  12. 12.
    Kulke MH, Stuart K, Enzinger PC, Ryan DP, Clark JW, Muzikansky A, Vincitore M, Michelini A, Fuchs CS (2006) Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol 24(3):401–406PubMedCrossRefGoogle Scholar
  13. 13.
    Kulke MH, Bergsland EK, Ryan DP, Enzinger PC, Lynch TJ, Zhu AX, Meyerhardt JA, Heymach JV, Fogler WE, Sidor C, Michelini A, Kinsella K, Venook AP, Fuchs CS (2006) Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol 24(22):3555–3561PubMedCrossRefGoogle Scholar
  14. 14.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRefGoogle Scholar
  15. 15.
    Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, Tabruyn SP, You WK, Chapman HA, Christensen JG, Aftab DT, McDonald DM (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discovery 2(3):270–287Google Scholar
  16. 16.
    Zhang J, Jia Z, Li Q, Wang L, Rashid A, Zhu Z, Evans DB, Vauthey JN, Xie K, Yao JC (2007) Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109(8):1478–1486PubMedCrossRefGoogle Scholar
  17. 17.
    Yao JC, Phan A, Hoff PM, Chen HX, Charnsangavej C, Yeung SC, Hess K, Ng C, Abbruzzese JL, Ajani JA (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 26:1316–1323PubMedCrossRefGoogle Scholar
  18. 18.
    Kulke MH, Stuart K, Earle CC, Bhargava P, Clark JW, Enzinger PC, Meyerhardt JA, Attawia M, Lawrence C, Fuchs CS (2006) A phase II study of temozolomide and bevacizumab in patients with advanced neuroendocrine tumors. J Clin Oncol 24(18S):4044 (June 20 Supplement)Google Scholar
  19. 19.
    Kunz PL, Kuo T, Zahn JM, Kaiser HL, Norton JA, Visser BC, Longacre TA, Ford JM, Balise RR, Fisher GA (2010) A phase II study of capecitabine, oxaliplatin, and bevacizumab for metastatic or unresectable neuroendocrine tumors. J Clin Oncol 28:15s, suppl; abstr 4104Google Scholar
  20. 20.
    Venook AP, Ko AH, Tempero MA, Uy J, Weber T, Korn M, Bergsland EK (2008) Phase II trial of FOLFOX plus bevacizumab in advanced, progressive neuroendocrine tumors. J Clin Oncol 26:15s, suppl; abstr 15545Google Scholar
  21. 21.
    Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917PubMedCrossRefGoogle Scholar
  22. 22.
    Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMedGoogle Scholar
  23. 23.
    Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952PubMedCrossRefGoogle Scholar
  24. 24.
    Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET (2003) Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res 9:1469–1473PubMedGoogle Scholar
  25. 25.
    Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen JS, Horsch D, Hammel P, Wiedenmann B, Van Cutsem E, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513PubMedCrossRefGoogle Scholar
  26. 26.
    Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, Bergsland E, Stuart K, Tye L, Huang X, Li JZ, Baum CM, Fuchs CS (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26(20):3403–3410PubMedCrossRefGoogle Scholar
  27. 27.
    Hobday TJ, Rubin J, Holen K, et al. (2007) MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a phase II consortium (P2C) study. J Clin Oncol 25:18s, suppl; abstr 4504Google Scholar
  28. 28.
    Pavel ME, Bartel C, Heuck F, Neumann F, Tiling N, Pape UF, Plöckinger U, Wiedenmann B (2008) Open-label, non-randomized, multicenter phase II study evaluating the angiogenesis inhibitor PTK787/ZK222584 (PTK/ZK) in patients with advanced neuroendocrine carcinomas (NEC). J Clin Oncol 26:15s, suppl; abstr 14684Google Scholar
  29. 29.
    Anthony L, Chester M, Michael S, O’Dorisio TM, O’Dorisio MS (2008) Phase II open-label clinical trial of vatalanib (PTK/ZK) in patients with progressive neuroendocrine cancer. J Clin Oncol 26:15s, suppl; abstr 14624Google Scholar
  30. 30.
    Phan AT, Yao JC, Fogelman DR, Hess KR, Ng CS, Bullock SA, Malinowski P, Regan E, Kulke M (2010) A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J Clin Oncol 28:7s, suppl; abstr 4001CrossRefGoogle Scholar
  31. 31.
    Vignot S, Faivre S, Aguirre D, Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537PubMedCrossRefGoogle Scholar
  32. 32.
    Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4Google Scholar
  33. 33.
    Pavel M, Baudin E, Couvelard A, Krenning E, Öberg K, Steinmüller T, Anlauf M, Wiedenmann B, Salazar R (2012) ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95:157–176PubMedCrossRefGoogle Scholar
  34. 34.
    Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomassetti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Öberg K (2011) RAD001 in advanced neuroendocrine tumors, third trial (RADIANT-3) study group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523PubMedCrossRefGoogle Scholar
  35. 35.
    Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407PubMedCrossRefGoogle Scholar
  36. 36.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603PubMedCrossRefGoogle Scholar
  37. 37.
    Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Canc Cell 15(3):220–231CrossRefGoogle Scholar
  38. 38.
    Yao JC, Phan A (2011) Overcoming antiangiogenic resistance. Clin Cancer Res 17(16):5217–5219PubMedCrossRefGoogle Scholar
  39. 39.
    Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP et al (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8:1867–1877PubMedCrossRefGoogle Scholar
  40. 40.
    Jia Z, Zhang J, Wei D, Wang L, Yuan P, Le X et al (2007) Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin. Cancer Res 67:4878–4885PubMedCrossRefGoogle Scholar
  41. 41.
    Allen E, Walters IB, Hanahan D (2011) Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res 17:5299–5310PubMedCrossRefGoogle Scholar
  42. 42.
    Kulke MH, Chan JA, Meyerhardt JA, Zhu AX, Abrams TA, Blaszkowsky LS, Regan E, Sidor C, Fuchs CS (2011) A prospective phase II study of 2-methoxyestradiol administered in combination with bevacizumab in patients with metastatic carcinoid tumors. Canc Chemother Pharmacol 68:293–300CrossRefGoogle Scholar
  43. 43.
    Castellano DE, Capdevila J, Salazar R, Sastre J, Alonso V, Llanos M, Garcia-Carbonero R, Abad A, Sevilla I, Duran I (2011) Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumor: A a phase II study of the Spanish Neuroendocrine Tumor Group (GETNE0801). J Clin Oncol 29:15s, suppl; abstr 4113Google Scholar
  44. 44.
    Yao JC, Phan AT, Fogleman D, Ng CS, Jacobs CB, Dagohoy CD, Leary C, Hess KR (2010) Randomized run-in study of bevacizumab (B) and everolimus (E) in low- to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J Clin Oncol 28:15s, suppl; abstr 4002CrossRefGoogle Scholar
  45. 45.
    Franco M, Pàez-Ribes M, Cortez E, Casanovas O, Pietras K (2011) Use of a mouse model of pancreatic neuroendocrine tumors to find pericyte biomarkers of resistance to anti-angiogenic therapy. Horm Metab Res 43(12):884–889, Epub 2011 Sep 29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Hereditary Cancer Program, Catalan Institute of Oncology—IDIBELLBarcelonaSpain
  2. 2.Tumor Angiogenesis GroupCatalan Institute of Oncology—IDIBELLBarcelonaSpain

Personalised recommendations