Targeted Oncology

, 6:29 | Cite as

The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas

  • Sushma Vemulapalli
  • Alain Mita
  • Yesid Alvarado
  • Kamalesh Sankhala
  • Monica Mita
Review

Abstract

The mammalian target of rapamycin (mTOR) is a protein kinase that functions as a key regulator of cell growth, proliferation and differentiation, cell-cycle progression, angiogenesis, protein degradation, and apoptosis. Following activation by a number of oncogenic signals such as growth factors, energy and nutrients, mTOR stimulates several downstream effectors including the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4 E binding protein-1 (4 EBP-1), as well as a complex network of regulatory loops. Activation of the mTOR pathway plays a critical role in the development of many tumor types, including renal cell and breast carcinomas, neuroendocrine tumors, and sarcomas. Bone and soft tissue sarcomas are rare, heterogeneous tumors that are curable by local treatments if diagnosed at early stages; however advanced or metastatic sarcomas are rarely curable and very few drugs are efficacious in this setting. Several disruptions in phosphatidylinositol-3 kinase (PI3K)–Akt–mTOR signaling are associated with malignant transformation or progression in various sarcoma sub-types. The PI3K–Akt–mTOR pathway is therefore an exciting target for therapy of sarcomas, and its blockade represents an opportunity to improve outcomes in this poor-prognosis disease. Early studies with mTOR inhibitors have demonstrated promising antitumor activity in patients with metastatic sarcoma who have failed standard treatments. This article discusses the mTOR signaling pathway and summarizes the clinical experience with mTOR inhibitors in patients with advanced or metastatic sarcoma.

Keywords

mTOR inhibitors Sarcomas Temsirolimus Ridaforolimus 

Notes

Conflict of interest statement

No funds or benefits were received in support of this study.

References

  1. 1.
    JA D (2009) Different view of Sarcoma statistics. http://sarcomahelp.org/sarcoma_statistics.html January 2010
  2. 2.
    National Cancer Institute (2009) SEER Cancer statistics. http://seer.cancer.gov/statistics/
  3. 3.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRefGoogle Scholar
  4. 4.
    Yang JC, Chang AE, Baker AR, Sindelar WF, Danforth DN, Topalian SL, DeLaney T, Glatstein E, Steinberg SM, Merino MJ, Rosenberg SA (1998) Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol 16(1):197–203PubMedGoogle Scholar
  5. 5.
    Brennan MF AK, Maki RG, O Sullivan B (2008) Soft tissue sarcoma. 8 th edition edn. Devita VT Jr.,Lawrence TS, Rosenburg SA, eds. Cancer. Principles and practice of Oncology, Philadelphia, PAGoogle Scholar
  6. 6.
    Hensley ML, Maki R, Venkatraman E, Geller G, Lovegren M, Aghajanian C, Sabbatini P, Tong W, Barakat R, Spriggs DR (2002) Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol 20(12):2824–2831PubMedCrossRefGoogle Scholar
  7. 7.
    Hensley ML, Blessing JA, Degeest K, Abulafia O, Rose PG, Homesley HD (2008) Fixed-dose rate gemcitabine plus docetaxel as second-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II study. Gynecol Oncol 109(3):323–328PubMedCrossRefGoogle Scholar
  8. 8.
    Hensley ML, Blessing JA, Mannel R, Rose PG (2008) Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II trial. Gynecol Oncol 109(3):329–334PubMedCrossRefGoogle Scholar
  9. 9.
    Fingar DCRC, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BPI/eukaryotic translation initiation factor 4E. Mol Cell Biol 24(1):200–216PubMedCrossRefGoogle Scholar
  10. 10.
    Schmelzle THM (2000) TOR, a central controller of cell growth. Cell 13(103):253–262CrossRefGoogle Scholar
  11. 11.
    Wiederrecht GJSC, Brunn GJ (1995) Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog Cell Cycle Res 1:53–71PubMedGoogle Scholar
  12. 12.
    Hennessy BTSD, Ram PT, Lu Y, Mills GB (2005) Exploting the the PI3K/AKT pathway for cancer drug discovery. Nat RevDrug Discov 4(12):988–1004CrossRefGoogle Scholar
  13. 13.
    Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12(18):5268–5272PubMedCrossRefGoogle Scholar
  14. 14.
    Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92(18):1472–1489PubMedCrossRefGoogle Scholar
  15. 15.
    Jefferies HBFS, Dennis PB et al (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16(12):3693–3704PubMedCrossRefGoogle Scholar
  16. 16.
    Gingras ACRB, Sonenberg N (1999) effectors of mRNA recruitment to ribosomes and regulation of translation. Annu Rev Biochem 68:913–963PubMedCrossRefGoogle Scholar
  17. 17.
    Sabatini D (2006) mTOR and Cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734PubMedCrossRefGoogle Scholar
  18. 18.
    Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468PubMedCrossRefGoogle Scholar
  19. 19.
    Zeng Z, dos Sarbassov D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, Giles FJ, Sabatini DM, Andreeff M, Konopleva M (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109(8):3509–3512PubMedCrossRefGoogle Scholar
  20. 20.
    Kim DHSD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175PubMedCrossRefGoogle Scholar
  21. 21.
    Kim DHSD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrientsensitive nteraction between raptor and mTOR. Mol Cell 11(4):895–904PubMedCrossRefGoogle Scholar
  22. 22.
    Peterson TRLM, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886PubMedCrossRefGoogle Scholar
  23. 23.
    Sancak YTC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915PubMedCrossRefGoogle Scholar
  24. 24.
    Vander Haar ELS, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323PubMedCrossRefGoogle Scholar
  25. 25.
    Frias MATC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:958–970CrossRefGoogle Scholar
  26. 26.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128PubMedCrossRefGoogle Scholar
  27. 27.
    Sarbassov DDAS, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302PubMedCrossRefGoogle Scholar
  28. 28.
    Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20):2820–2832PubMedCrossRefGoogle Scholar
  29. 29.
    Kozlowski CB, Avruch J (1998) Regulation of protein metabolism in muscle. JBiol Chem 273:14484–14494Google Scholar
  30. 30.
    Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280(38):33076–33082PubMedCrossRefGoogle Scholar
  31. 31.
    Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102(40):14238–14243PubMedCrossRefGoogle Scholar
  32. 32.
    Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7(5):456–465PubMedCrossRefGoogle Scholar
  33. 33.
    Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403(1):13–20PubMedCrossRefGoogle Scholar
  34. 34.
    Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y, Glatfelter AA, Duray PH, Meltzer PS (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65(20):9226–9235PubMedCrossRefGoogle Scholar
  35. 35.
    Ricci R, Maggiano N, Castri F, Rinelli A, Murazio M, Pacelli F, Potenza AE, Vecchio FM, Larocca LM (2004) Role of PTEN in gastrointestinal stromal tumor progression. Arch Pathol Lab Med 128(4):421–425PubMedGoogle Scholar
  36. 36.
    Saito T, Oda Y, Kawaguchi K, Takahira T, Yamamoto H, Tamiya S, Tanaka K, Matsuda S, Sakamoto A, Iwamoto Y, Tsuneyoshi M (2003) PTEN/MMAC1 gene mutation is a rare event in soft tissue sarcomas without specific balanced translocations. Int J Cancer 104(2):175–178PubMedCrossRefGoogle Scholar
  37. 37.
    Wan X, Helman LJ (2003) Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 22(50):8205–8211PubMedCrossRefGoogle Scholar
  38. 38.
    Okuno S (2006) Mammalian traget of Rapamycin inhibitors in sarcomas. Curr Op Oncol 18(4):360–362CrossRefGoogle Scholar
  39. 39.
    Scotlandi K, Picci P (2008) Targeting insulin-like growth factor 1 receptor in sarcomas. Curr Opin Oncol 20(4):419–427PubMedCrossRefGoogle Scholar
  40. 40.
    Xie Y, Skytting B, Nilsson G, Brodin B, Larsson O (1999) Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res 59(15):3588–3591PubMedGoogle Scholar
  41. 41.
    Fulda S (2008) Targeting apoptosis resistance in rhabdomyosarcoma. Curr Cancer Drug Targets 6:536–544CrossRefGoogle Scholar
  42. 42.
    Ganti R, Skapek SX, Zhang J, Fuller CE, Wu J, Billups CA, Breitfeld PP, Dalton JD, Meyer WH, Khoury JD (2006) Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 19(9):1213–1220PubMedCrossRefGoogle Scholar
  43. 43.
    Montanner S (2007) Akt/TSC/mTOR activation by the KSHV G protein -coupled receptor: emerging into the molecular oncogenesis and treatment of Kaposi’s sarcoma. Cell Cycle 6(4):438–443CrossRefGoogle Scholar
  44. 44.
    Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963PubMedCrossRefGoogle Scholar
  45. 45.
    Wan X, Helman LJ (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12(8):1007–1018PubMedCrossRefGoogle Scholar
  46. 46.
    Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, Socci ND, Behrendt N, Ma L, Maki RG, Pandolfi PP, Cordon-Cardo C (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13(6):748–753PubMedCrossRefGoogle Scholar
  47. 47.
    Girnita L, Girnita A, Wang M, Meis-Kindblom JM, Kindblom LG, Larsson O (2000) A link between basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing’s sarcoma cells. Oncogene 19(37):4298–4301PubMedCrossRefGoogle Scholar
  48. 48.
    Hughes DPTD, Giordano TJ, Baker LH, McDonagh KT (2004) Cell surface expression of epidermal growth fatcor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 64(6):2047–2053PubMedCrossRefGoogle Scholar
  49. 49.
    DuBois S, Demetri G (2007) Markers of angiogenesis and clinical features in patients with sarcoma. Cancer 109(5):813–819PubMedCrossRefGoogle Scholar
  50. 50.
    Potti A, Ganti AK, Tendulkar K, Sholes K, Chitajallu S, Koch M, Kargas S (2004) Determination of vascular endothelial growth factor (VEGF) overexpression in soft tissue sarcomas and the role of overexpression in leiomyosarcoma. J Cancer Res Clin Oncol 130(1):52–56PubMedCrossRefGoogle Scholar
  51. 51.
    Kuhnen C, Lehnhardt M, Tolnay E, Muehlberger T, Vogt PM, Muller KM (2000) Patterns of expression and secretion of vascular endothelial growth factor in malignant soft-tissue tumours. J Cancer Res Clin Oncol 126(4):219–225PubMedCrossRefGoogle Scholar
  52. 52.
    Iyoda A, Hiroshima K, Baba M, Fujisawa T, Yusa T, Ohwada H (2001) Expression of vascular endothelial growth factor in thoracic sarcomas. Ann Thorac Surg 71(5):1635–1639PubMedCrossRefGoogle Scholar
  53. 53.
    Graeven U, Andre N, Achilles E, Zornig C, Schmiegel W (1999) Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in patients with soft-tissue sarcoma. J Cancer Res Clin Oncol 125(10):577–581PubMedCrossRefGoogle Scholar
  54. 54.
    Sleijfer S, Van der Graaf W, Blay J (2008) Angiogenesis inhibition in non-GIST soft tissue sarcomas. Oncologist 13(11):1193–1200PubMedCrossRefGoogle Scholar
  55. 55.
    Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443PubMedCrossRefGoogle Scholar
  56. 56.
    Falcon BL, Barr S, Gokhale PC, Chou J, Fogarty J, Depeille P, Miglarese M, Epstein DM, McDonald DM Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 Inhibitors. Cancer Res 71 (5):1573–1583Google Scholar
  57. 57.
    Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905–909PubMedCrossRefGoogle Scholar
  58. 58.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758PubMedCrossRefGoogle Scholar
  59. 59.
    Stallone GSA, Infante B et al (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323PubMedCrossRefGoogle Scholar
  60. 60.
    Récher C, Beyne-Rauzy O, Demur C et al (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105:2527–2534PubMedCrossRefGoogle Scholar
  61. 61.
    Ratain MJ NK, Knightley-Moshier K (2007) A phase 1b study of oral rapamycin (sirolimus) in patients with advanced malignancies. J Clin Oncol ASCO Annual Meeting Proceedings Part I 25(18S):3510Google Scholar
  62. 62.
    Mita M, Chu QS et al (2008) Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 26:361–367PubMedCrossRefGoogle Scholar
  63. 63.
    Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA, Houghton PJ (2001) Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 7(6):1758–1764PubMedGoogle Scholar
  64. 64.
    Gibbons JJ, Discafini C, Peterson R, Hernandez R, Skotnocki J, Frost J (1999) The effect of CCI-779, a novel macrolide antitumor agent on the growth human tumor cells in vitro and in nude mouse xenograft models in vitro. Proc Am Ass Cancer Res 40:301, abstr. 2000Google Scholar
  65. 65.
    Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC, Janss AJ (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61(4):1527–1532PubMedGoogle Scholar
  66. 66.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281PubMedCrossRefGoogle Scholar
  67. 67.
    Escudier B, Oudard S (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456PubMedCrossRefGoogle Scholar
  68. 68.
    Hess G (2009) Temsirolimus for the treatment of mantle cell lymphoma. Exp Rev Hem 2:631–640CrossRefGoogle Scholar
  69. 69.
    Okuno SH (2006) A multicenter phase 2 consortium (P2C) study of the mTOR inhibitor CCI-779 in advanced soft tissue sarcomas. J Clin Oncol ASCO Annual Meeting Proceedings Part I. 24(18S) (June 20 Supplement): abstr. 9504Google Scholar
  70. 70.
    Van Glabbeke MVJ, Judson I, Nielsen OS (2002) Progression-free rate as the principal end-point for phase II trials in soft-tissue sarcomas. Eur J Cancer 38:543–549PubMedCrossRefGoogle Scholar
  71. 71.
    O’Reilly TVJ, Muller M et al (2002) In vivo activity of RAD001, an orally active rapamycin derivative, in experimental tumor models [abstract]. Proc Am Assoc Cancer Res 43:71Google Scholar
  72. 72.
    Lane HSC, Theuer A et al (2002) Antiangiogenic activity of RAD001, an orally active anticancer agent [abstract]. Proc Am Assoc Cancer Res 43:184Google Scholar
  73. 73.
    A AvOe (2005) A phase I/II trial of the oral mTOR-inhibitor everolimus (E) and imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM. Study update. J Clin Oncol ASCO Annual Meeting Proceedings. 23(16S) Part I of II (June 1 Supplement): abstr. 9033Google Scholar
  74. 74.
    H. Dumez e (2008) A phase I-II study of everolimus (RAD001) in combination with imatinib in patients (pts) with imatinib-resistant gastrointestinal stromal tumors (GIST) J Clin Oncol (Meeting Abstracts) 26 (15): abstr 10519Google Scholar
  75. 75.
    Clackson T MC, Rivera VM, et al (2003) Broad anti-tumor activity of AP2357, an mTOR inhibitor in clinical development[abstract]. J Clin Oncol ProceedingsGoogle Scholar
  76. 76.
    Mita MM, Poplin E et al (2008) Deforolimus trial 106- A Phase I trial evaluating 7 regimens of oral Deforolimus (AP23573, MK-8669). J Clin Oncol (Meeting Abstracts) 26Google Scholar
  77. 77.
    Hartford CM, Desai AA, Janisch L, Karrison T, Rivera VM, Berk L, Loewy JW, Kindler H, Stadler WM, Knowles HL, Bedrosian C, Ratain MJ (2009) A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res 15(4):1428–1434PubMedCrossRefGoogle Scholar
  78. 78.
    Chawla SP TA, Staddon AP et al. (2007) Survival results with AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas: update of phase II trial. J Clin Oncol (Meeting Abstracts) 25Google Scholar
  79. 79.
    Ridaforolimus in Treatment of Sarcoma-SUCCEED (Sarcoma Multi-Center Clinical Eval. of the Efficacy of Ridaforolimus)(8669–011). http://clinicaltrials.gov/ct2/show/NCT00538239
  80. 80.
    A Pivotal Trial to Determine the Efficacy and Safety of AP23573 When Administered as Maintenance Therapy to Patients With Metastatic Soft-Tissue or Bone Sarcomas (2011) http://clinicaltrials.gov/ct2/show/NCT00538239.
  81. 81.
    Safety, Tolerability and Maximum Tolerated Dose of Oral AP23573 in Combination With Doxorubicin http://clinicaltrials.gov/ct2/show/NCT00288431
  82. 82.
    Perotti A, Sessa C, Colombo N, Del Conte G, Delmonte A et al (2010) Phase Ib study of RAD001 (R) with pegylated-liposomal doxorubicin (PLD) in patients with advanced solid tumors. J Clin Oncol 28(15): abstr 5050Google Scholar
  83. 83.
    Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP, Rosen N (1990) Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest 86(6):1806–1814PubMedCrossRefGoogle Scholar
  84. 84.
    Hamilton G, Mallinger R, Hofbauer S, Havel M (1991) The monoclonal HBA-71 antibody modulates proliferation of thymocytes and Ewing’s sarcoma cells by interfering with the action of insulin-like growth factor I. Thymus 18(1):33–41PubMedGoogle Scholar
  85. 85.
    Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L, Francesconi M, Mercuri M, Caccuri AM, Serra M, Knuutila S, Picci P (2009) Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27(13):2209–2216PubMedCrossRefGoogle Scholar
  86. 86.
    Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S, Croci S, Perdichizzi S, Zambelli D, Serra M, Garcia-Echeverria C, Hofmann F, Picci P (2005) Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65(9):3868–3876PubMedCrossRefGoogle Scholar
  87. 87.
    Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M, Lollini PL, Nanni P, Picci P, Scotlandi K (2001) Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin Cancer Res 7(6):1790–1797PubMedGoogle Scholar
  88. 88.
    Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ (2009) The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69(19):7662–7671PubMedCrossRefGoogle Scholar
  89. 89.
    Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, Batzel GN, Yin D, Pritchard-Jones K, Judson I, Worden FP, Gualberto A, Scurr M, de Bono JS, Haluska P Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol 11 (2):129–135Google Scholar
  90. 90.
    Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER, Ludwig DL, McCubrey JA (2006) Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 20(7):1254–1260PubMedCrossRefGoogle Scholar
  91. 91.
    Naing P et al (2010) Dual inhibition of mTOR and IGFR pathways. J Clin Oncol 28:15s: abstr 3007Google Scholar
  92. 92.
    A phase II study of temsirolimus and IGF-1 Receptor antibody cixutumumab in patients with metastatic sarcomas. http://clinicaltrials.gov/ct2/show/NCT01016015
  93. 93.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22PubMedCrossRefGoogle Scholar
  94. 94.
    O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508PubMedCrossRefGoogle Scholar
  95. 95.
    Ogita S, LoRusso P (2011) Targeting phosphatidylinositol 3 kinase (PI3K)-Akt beyond rapalogs. Targ Oncol. doi:10.1007/s11523-011-0176-7 Google Scholar
  96. 96.
    Brana I LP, Baselga J, et al (2010) A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. In: J Clin Oncol 28(15s): abstr 3030Google Scholar
  97. 97.
    Edelman G BC, Shapiro G, A (2010) phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol 28(15s): abstr 3004Google Scholar
  98. 98.
    Burris H RJ, Sharma S, et al (2010) First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. J Clin Oncol 28(15s): abstr 3005Google Scholar
  99. 99.
    Baselga J DJM, Rodon J, (2010) A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors. J Clin Oncol 28(15s): abstr 3003Google Scholar
  100. 100.
    Delbaldo C (2011) Predictive biomarkers for the activity of mammalian target of rapamycin (mTOR) inhibitors. Targ Oncol. doi:10.1007/s11523-011-0177-6

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sushma Vemulapalli
    • 1
  • Alain Mita
    • 1
  • Yesid Alvarado
    • 1
  • Kamalesh Sankhala
    • 1
  • Monica Mita
    • 1
  1. 1.Institute for Drug DevelopmentCancer Therapy and Research Center at The University of Texas Health Science CenterSan AntonioUSA

Personalised recommendations