Targeted Oncology

, Volume 5, Issue 3, pp 193–200 | Cite as

Novel targeted agents for platelet-derived growth factor receptor and c-KIT in malignant gliomas



Malignant gliomas are a heterogeneous group of tumors with a varying natural history and response to treatment. Despite current therapeutic strategies, these tumors almost universally recur after excision and are associated with a poor survival. Increasingly, the true heterogeneity of these tumors is being correlated with distinct molecular subgroups. Platelet-derived growth factor receptor (PDGFR) alpha is almost universally expressed on glioma cells; expression of the proto-oncogene c-KIT has also been reported. These findings have led to the clinical investigation of inhibitors of this pathway, such as imatinib and dasatinib, for the treatment of recurrent malignant glioma. To date, this approach in unselected patients has been disappointing. However, isolated responses have been seen, which may correlate with constitutive activation of one or more of the corresponding tyrosine kinases. In the future, it is hoped that an increasing knowledge of glioma biology will translate into the more judicious use of these and other targeted therapies, resulting in improvements in patient outcomes. This review describes the preclinical science behind PDGFR and c-KIT, the clinical importance of these molecular pathways and the available data from translational clinical trials.


c-KIT Platelet-derived growth factor receptor (PDGFR) Malignant glioma Imatinib Dasatinib Targeted therapy 



The authors thank Judith Lampron, Editor, Department of Neurology, Memorial Sloan-Kettering Cancer Center ( for her expert editorial input.

Conflict of interest statement

The authors do not have any conflict of interest to declare.


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  2. 2.
    Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018CrossRefPubMedGoogle Scholar
  3. 3.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024CrossRefPubMedGoogle Scholar
  4. 4.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934CrossRefPubMedGoogle Scholar
  5. 5.
    Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219PubMedGoogle Scholar
  6. 6.
    Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735PubMedGoogle Scholar
  7. 7.
    Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, Schlessinger J, Westermark B (1998) Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 48:3910–3918Google Scholar
  8. 8.
    Guha A, Dashner K, Black PM, Wagner JA, Stiles CD (1995) Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60:168–173CrossRefPubMedGoogle Scholar
  9. 9.
    Reardon DA, Dresemann G, Taillibert S, Campone M, van den Bent M, Clement P, Blomquist E, Gordower L, Schultz H, Raizer J, Hau P, Easaw J, Gil M, Tonn J, Gijtenbeek A, Schlegel U, Bergstrom P, Green S, Weir A, Nikolova Z (2009) Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br J Cancer 101:1995–2004CrossRefPubMedGoogle Scholar
  10. 10.
    Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312CrossRefPubMedGoogle Scholar
  11. 11.
    Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4:e7752CrossRefPubMedGoogle Scholar
  12. 12.
    Raymond E (2009) PDGFR inhibition in brain tumours—oft expectation fails where most it promises. Eur J Cancer 45:2236–2238CrossRefPubMedGoogle Scholar
  13. 13.
    Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S, Dimitrijevic S, Kononen J, Lugli A, Simon R, Sauter G (2004) Prevalence of KIT expression in human tumors. J Clin Oncol 22:4514–4522CrossRefPubMedGoogle Scholar
  14. 14.
    Cetin N, Dienel G, Gokden M (2005) CD117 expression in glial tumors. J Neurooncol 75:195–202CrossRefPubMedGoogle Scholar
  15. 15.
    Joensuu H, Puputti M, Sihto H, Tynninen O, Nupponen NN (2005) Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207:224–231CrossRefPubMedGoogle Scholar
  16. 16.
    Sihto H, Tynninen O, Butzow R, Saarialho-Kere U, Joensuu H (2007) Endothelial cell KIT expression in human tumours. J Pathol 211:481–488CrossRefPubMedGoogle Scholar
  17. 17.
    Gomes AL, Reis-Filho JS, Lopes JM, Martinho O, Lambros MB, Martins A, Schmitt F, Pardal F, Reis RM (2007) Molecular alterations of KIT oncogene in gliomas. Cell Oncol 29:399–408PubMedGoogle Scholar
  18. 18.
    Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, Isola J, Paetau A, Joensuu H, Nupponen NN (2006) Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4:927–934CrossRefPubMedGoogle Scholar
  19. 19.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B, Goldman J, O'Brien SG, Russell N, Fischer T, Ottmann O, Cony-Makhoul P, Facon T, Stone R, Miller C, Tallman M, Brown R, Schuster M, Loughran T, Gratwohl A, Mandelli F, Saglio G, Lazzarino M, Russo D, Baccarani M, Morra E (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652CrossRefPubMedGoogle Scholar
  20. 20.
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480CrossRefPubMedGoogle Scholar
  21. 21.
    Kilic T, Alberta JA, Zdunek PR, Acar M, Iannarelli P, O'Reilly T, Buchdunger E, Black PM, Stiles CD (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150PubMedGoogle Scholar
  22. 22.
    Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907CrossRefPubMedGoogle Scholar
  23. 23.
    Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, Frenay M, Rampling R, Stupp R, Kros JM, Heinrich MC, Gorlia T, Lacombe D, van den Bent MJ (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665CrossRefPubMedGoogle Scholar
  24. 24.
    Dai H, Marbach P, Lemaire M, Hayes M, Elmquist WF (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092CrossRefPubMedGoogle Scholar
  25. 25.
    Reardon DA, Desjardins A, Vredenburgh JJ, Sathornsumetee S, Rich JN, Quinn JA, Lagattuta TF, Egorin MJ, Gururangan S, McLendon R, Herndon JE 2nd, Friedman AH, Salvado AJ, Friedman HS (2008) Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: phase 1 trial in adults with malignant glioma. Neuro Oncol 10:330–340CrossRefPubMedGoogle Scholar
  26. 26.
    Reardon DA, Egorin MJ, Quinn JA, Rich JN, Gururangan S, Vredenburgh JJ, Desjardins A, Sathornsumetee S, Provenzale JM, Herndon JE 2nd, Dowell JM, Badruddoja MA, McLendon RE, Lagattuta TF, Kicielinski KP, Dresemann G, Sampson JH, Friedman AH, Salvado AJ, Friedman HS (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368CrossRefPubMedGoogle Scholar
  27. 27.
    Desjardins A, Quinn JA, Vredenburgh JJ, Sathornsumetee S, Friedman AH, Herndon JE, McLendon RE, Provenzale JM, Rich JN, Sampson JH, Gururangan S, Dowell JM, Salvado A, Friedman HS, Reardon DA (2007) Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 83:53–60CrossRefPubMedGoogle Scholar
  28. 28.
    Dresemann G, Weller M, Rosenthal MA, Wedding U, Wagner W, Engel E, Heinrich B, Mayer-Steinacker R, Karup-Hansen A, Fluge O, Nowak A, Mehdorn M, Schleyer E, Krex D, Olver IN, Steinbach JP, Hosius C, Sieder C, Sorenson G, Parker R, Nikolova Z (2009) Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neurooncol 96:393–402CrossRefPubMedGoogle Scholar
  29. 29.
    Heinrich MC, Owzar K, Corless CL, Hollis D, Borden EC, Fletcher CD, Ryan CW, von Mehren M, Blanke CD, Rankin C, Benjamin RS, Bramwell VH, Demetri GD, Bertagnolli MM, Fletcher JA (2008) Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 26:5360–5367CrossRefPubMedGoogle Scholar
  30. 30.
    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661CrossRefPubMedGoogle Scholar
  31. 31.
    Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY, Bokemeyer C, Deininger MW, Druker BJ, Heinrich MC (2006) Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66:473–481CrossRefPubMedGoogle Scholar
  32. 32.
    Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE (2006) The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797CrossRefPubMedGoogle Scholar
  33. 33.
    Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, Cortes J, O'Brien S, Nicaise C, Bleickardt E, Blackwood-Chirchir MA, Iyer V, Chen TT, Huang F, Decillis AP, Sawyers CL (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541CrossRefPubMedGoogle Scholar
  34. 34.
    Morris PG, Abbruzzi A, Chang JC, Patil S, D'Andrea G, Dang C, Gilewski T, Modi S, Seidman AD, Sklarin N, Jeselsohn RM, Hudis CA, Fornier MN (2009) A Phase I Study of Dasatinib (D) in Combination with Weekly (w) Paclitaxel (P) for Patients (Pts) with Metastatic Breast Carcinoma (MBC): activity despite prior taxane exposure. San Antonio Breast Cancer Symposium: Abstract 5070Google Scholar
  35. 35.
    Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR (2009) Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 27:77–83CrossRefPubMedGoogle Scholar
  36. 36.
    Takenaka N, Mikoshiba K, Takamatsu K, Tsukada Y, Ohtani M, Toya S (1985) Immunohistochemical detection of the gene product of Rous sarcoma virus in human brain tumors. Brain Res 337:201–207CrossRefPubMedGoogle Scholar
  37. 37.
    Dasatinib in Treating Patients With Recurrent Glioblastoma Multiforme or Gliosarcoma. In:; Accessed April 16th 2010
  38. 38.
    Brastiano PK, Batchelor T (2010) Targeting VEGF and VEGFR for the treatment of malignant glioma. Target Oncol: in pressGoogle Scholar
  39. 39.
    Sanz M, Burnett A, Lo-Coco F, Lowenberg B (2009) FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 21:594–600CrossRefPubMedGoogle Scholar
  40. 40.
    King GD, Muhammad AK, Curtin JF, Barcia C, Puntel M, Liu C, Honig SB, Candolfi M, Mondkar S, Lowenstein PR, Castro MG (2008) Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 10:19–31CrossRefPubMedGoogle Scholar
  41. 41.
    Ali S, King GD, Curtin JF, Candolfi M, Xiong W, Liu C, Puntel M, Cheng Q, Prieto J, Ribas A, Kupiec-Weglinski J, van Rooijen N, Lassmann H, Lowenstein PR, Castro MG (2005) Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res 65:7194–7204CrossRefPubMedGoogle Scholar
  42. 42.
    Supko JG, Grossman SA, Peereboom DM, Chowdhary S, J. Lesser GJ, Nabors LB, Mikkelsen T, Desideri S, Batchelor TT (2009) Feasibility and phase I trial of tandutinib in patients with recurrent glioblastoma. Proc Am Soc Clin Oncol: Abstract 2039Google Scholar
  43. 43.
    Tandutinib and Bevacizumab in Treating Patients With Recurrent High-Grade Glioma. In: Accessed April 16th 2010
  44. 44.
    Patyna S, Laird AD, Mendel DB, O'Farrell AM, Liang C, Guan H, Vojkovsky T, Vasile S, Wang X, Chen J, Grazzini M, Yang CY, Haznedar JO, Sukbuntherng J, Zhong WZ, Cherrington JM, Hu-Lowe D (2006) SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol Cancer Ther 5:1774–1782CrossRefPubMedGoogle Scholar
  45. 45.
    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of NeurologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations