Targeted Oncology

, Volume 5, Issue 3, pp 217–227 | Cite as

Immune therapeutic targeting of glioma cancer stem cells

  • Mustafa Aziz Hatiboglu
  • Jun Wei
  • Adam Sauh Gee Wu
  • Amy B. Heimberger


Glioblastoma multiforme (GBM) is a lethal cancer that responds poorly to radiotherapy and chemotherapy. Glioma cancer stem cells (gCSCs) have been shown to recapitulate the characteristic features of GBM and to mediate chemotherapy and radiation resistance. Immunotherapeutic targeting of this cell population holds therapeutic promise but must be considered in the context of the immunosuppressive properties mediated by the gCSC. Recent findings have indicated that this goal will be challenging because the gCSC can suppress both the innate and adaptive immune systems by a variety of gCSC-secreted products and cell-membrane interactions. In this review article, we will attempt to reconcile the disparate research findings regarding the potential of immune targeting of the gCSC and propose several novel solutions.


Glioma cancer stem cells STAT3 Glioblastoma multiforme Immunotherapy 



We thank Lamonne Crutcher for assistance in obtaining tissue specimens and David M. Wildrick, Ph.D., Stephanie Jenkins and Audria Patrick for editorial assistance. Funding for these studies was graciously provided by The Anthony Bullock III Foundation (ABH), the Dr. Marnie Rose Foundation (ABH), the Mitchell Foundation (ABH), the University of Texas M. D. Anderson Cancer Center (ABH), and the National Institutes of Health (CA120813) (ABH).

Conflict of interest statement

The authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this paper.


  1. 1.
    Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  3. 3.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  4. 4.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  5. 5.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183PubMedCrossRefGoogle Scholar
  6. 6.
    Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  8. 8.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  9. 9.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  10. 10.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  11. 11.
    Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822PubMedCrossRefGoogle Scholar
  12. 12.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67–79PubMedCrossRefGoogle Scholar
  13. 13.
    Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26:2916–2924PubMedCrossRefGoogle Scholar
  14. 14.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  15. 15.
    Park DM, Rich JN (2009) Biology of glioma cancer stem cells. Mol Cells 28:7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  17. 17.
    Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, Hainfellner JA, Heppner FL, Dietrich PY, Zimmer Y, Cairncross JG, Janzer RC, DM DE, Stupp R, Hegi ME (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024PubMedCrossRefGoogle Scholar
  18. 18.
    Butowski N, Chang SM, Junck L, DeAngelis LM, Abrey L, Fink K, Cloughesy T, Lamborn KR, Salazar AM, Prados MD (2009) A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J Neurooncol 91:175–182PubMedCrossRefGoogle Scholar
  19. 19.
    De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J, Sciot R, Wilms G, Demaerel P, Warmuth-Metz M, Soerensen N, Wolff JE, Wagner S, Kaempgen E, Van Gool SW (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104PubMedCrossRefGoogle Scholar
  20. 20.
    Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL (2006) Phase I clinical trial of a TGF-b antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13:1052–1060PubMedCrossRefGoogle Scholar
  21. 21.
    Heimberger AB, Hussain SF, Aldape K, Sawaya R, Archer GA, Friedman H, Reardon D, Friedman A, Bigner D, Sampson JH (2006) Tumor-specific peptide vaccination in newly-diagnosed patients with GBM. J Clin Oncol (Meeting Abstracts) 24:2529Google Scholar
  22. 22.
    Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525PubMedCrossRefGoogle Scholar
  23. 23.
    Mitchell DA, Archer G, Bigner D, Friedman AH, Friedman HS, Reardon D, Vrendenburgh J, Herndon JE II, McLendon RE, Sampson J (2007) RNA-loaded dendritic cells targeting cytomegalovirus in patients with malignant glioma. Neuro Oncol 9:509Google Scholar
  24. 24.
    Sampson JH, Archer GE, Bigner DD, Davis T, Friedman HS, Keler T, Mitchell DA, Reardon DA, Sawaya R, Heimberger AB (2008) Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM. J Clin Oncol (Meeting Abstracts) 26:2011Google Scholar
  25. 25.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE 2nd, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH, Friedman HS, Bigner DD (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8:2773–2779PubMedCrossRefGoogle Scholar
  26. 26.
    Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, Baynes R, Wood G (2000) Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 9:e9PubMedCrossRefGoogle Scholar
  27. 27.
    Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, Goldfinger D, Ng H, Irvin D, Yu JS (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRefGoogle Scholar
  28. 28.
    Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, Kuramoto T, Obata Y, Komatsu N, Arima Y, Yamada A, Shigemori M, Itoh K, Tanaka R (2005) Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 11:5900–5911PubMedCrossRefGoogle Scholar
  29. 29.
    Yu J, Liu G, Ying H, Yong W, Black K, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRefGoogle Scholar
  30. 30.
    Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD (1995) Tumor antigens in astrocytic gliomas [Review]. Glia 15:244–256PubMedCrossRefGoogle Scholar
  31. 31.
    Fathallah-Shaykh HM, Gao W, Cho M, Herrera MA (1998) Priming in the brain, an immunologically privileged organ, elicits anti-tumor immunity. Int J Cancer 75:266–276PubMedCrossRefGoogle Scholar
  32. 32.
    Holladay FP, Choudhuri R, Heitz T, Wood GW (1994) Generation of cytotoxic immune responses during the progression of a rat glioma. J Neurosurg 80:90–96PubMedCrossRefGoogle Scholar
  33. 33.
    Heimberger AB, Bigner DD, Sampson JJ (2000) Biological principles of brain tumor immunotherapy. In: Liau LM, Becker DP, Cloughesy TF, Bigner DD (eds) Brain tumor immunotherapy. Humana Press Inc, Totowa, pp 101–130CrossRefGoogle Scholar
  34. 34.
    Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159:4415–4425PubMedGoogle Scholar
  35. 35.
    Roszman TL, Brooks WH, Steele C, Elliott LH (1985) Pokeweed mitogen-induced immunoglobulin secretion by peripheral blood lymphocytes from patients with primary intracranial tumors. Characterization of T helper and B cell function. J Immunol 134:1545–1550PubMedGoogle Scholar
  36. 36.
    Wu CJ (2008) Immunologic targeting of the cancer stem cell (Dec. 15), StemBook, ed., The Stem Cell Research Community, StemBook, doi: 10.3824/stembook.1.21.1
  37. 37.
    Stiles CD, Rowitch DH (2008) Glioma stem cells: a midterm exam. Neuron 58:832–846PubMedCrossRefGoogle Scholar
  38. 38.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  39. 39.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  40. 40.
    Wei J, Bar J, Kong L-Y, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB (2010) Glioblastoma cancer-initiating cells inhibit T cell proliferation and effector responses by the STAT3 pathway. Mol Cancer Ther 9:67–78PubMedCrossRefGoogle Scholar
  41. 41.
    Wei J, Barr J, Kong L-Y, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Sawaya R, Lang FF, Heimberger AB (2010) Glioma associated cancer-initiating cells induce immune suppression. Clin Cancer Res 16:461–473PubMedCrossRefGoogle Scholar
  42. 42.
    Wu A, Wei J, Kong LY, Wang Y, Priebe W, Sawaya R, Heimberger A (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. doi: 10.1093/neuonc/noq082 Google Scholar
  43. 43.
    Woolard K, Fine HA (2009) Glioma stem cells: better flat than round. Cell Stem Cell 4:466–467PubMedCrossRefGoogle Scholar
  44. 44.
    Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102:789–795PubMedCrossRefGoogle Scholar
  45. 45.
    Dey M, Hussain SF, Heimberger AB (2006) The role of glioma microenvironment in immune modulation: potential targets for intervention. Lett Drug Des Discov 3:443–451CrossRefGoogle Scholar
  46. 46.
    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88PubMedCrossRefGoogle Scholar
  47. 47.
    Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM, Galli R, Parmiani G, Maccalli C (2010) Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16:800–813PubMedCrossRefGoogle Scholar
  48. 48.
    Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M, Ferrone S (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311PubMedCrossRefGoogle Scholar
  49. 49.
    Peng W, Wang HY, Miyahara Y, Peng G, Wang RF (2008) Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68:7228–7236PubMedCrossRefGoogle Scholar
  50. 50.
    Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A, Popoff S, Nutt CL, Louis DN, Cairncross JG, Gilbert MR, Phillips HS, Mehta MP, Chakravarti A, Pelloski CE, Bhat K, Feuerstein BG, Jenkins RB, Aldape K (2010) A multigene predictor of outcome in glioblastoma. Neuro Oncol 12:49–57PubMedGoogle Scholar
  51. 51.
    Cattaneo E, Magrassi L, De-Fraja C, Conti L, Di Gennaro I, Butti G, Govoni S (1998) Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. Anticancer Res 18:2381–2387PubMedGoogle Scholar
  52. 52.
    Lo HW, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14:6042–6054PubMedCrossRefGoogle Scholar
  53. 53.
    Neder L, Marie SK, Carlotti CGJ, Ballai AA, Rosemberg S, Malheiros SM, Siqueira RP, Oba-Shinjo SM, Uno M, Aguiar PH, Miura F, Chammas R, Colli BO, Silva WAJ, Zago MA (2004) Galectin-3 as an immunohistochemical tool to distinguish pilocytic astrocytomas from diffuse astrocytomas, and glioblastomas from aanaplastic oligodendrogliomas. Brain Pathol 14:399–405PubMedCrossRefGoogle Scholar
  54. 54.
    Strik HM, Deininger MH, Frank B, Schluesener HJ, Meyermann R (2001) Galectin-3: cellular distribution and correlation with WHO-grade in human gliomas. J Neurooncol 53:13–20PubMedCrossRefGoogle Scholar
  55. 55.
    Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65:452–456PubMedCrossRefGoogle Scholar
  56. 56.
    Ausiello CM, Palma C, Maleci A, Spagnoli GC, Amici C, Antonelli G, Casciani CU, Cassone A (1991) Cell mediated cytotoxicity and cytokine production in peripheral blood mononuclear cells of glioma patients. Eur J Cancer 27:646–650PubMedCrossRefGoogle Scholar
  57. 57.
    Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302PubMedCrossRefGoogle Scholar
  58. 58.
    Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8:261–279PubMedCrossRefGoogle Scholar
  59. 59.
    El Andaloussi A, Lesniak MS (2007) CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83:145–152PubMedCrossRefGoogle Scholar
  60. 60.
    Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432PubMedGoogle Scholar
  61. 61.
    Streit WJ, Kreutzberg GW (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263PubMedCrossRefGoogle Scholar
  62. 62.
    Hussain SF, Yang D, Suki D, Grimm E, Heimberger AB (2006) Innate immune functions of microglia isolated from human glioma patients. J Transl Med 4:15, PMCID: PMC1501057PubMedCrossRefGoogle Scholar
  63. 63.
    Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M, Wesolowska A, Kettenmann H, Kaminska B (2007) The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain 130:476–489PubMedCrossRefGoogle Scholar
  64. 64.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRefGoogle Scholar
  65. 65.
    Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290PubMedGoogle Scholar
  66. 66.
    Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270PubMedCrossRefGoogle Scholar
  67. 67.
    Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-b superfamily. Proc Natl Acad Sci USA 94:11514–11519PubMedCrossRefGoogle Scholar
  68. 68.
    Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514, discussion 514–505PubMedCrossRefGoogle Scholar
  69. 69.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedCrossRefGoogle Scholar
  70. 70.
    Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159:4772–4780PubMedGoogle Scholar
  71. 71.
    Williams L, Bradley L, Smith A, Foxwell B (2004) Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 172:567–576PubMedGoogle Scholar
  72. 72.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004PubMedCrossRefGoogle Scholar
  73. 73.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [erratum appears in Nat Med 1996 Nov;2(11):1267]. Nat Med 2:1096–1103PubMedCrossRefGoogle Scholar
  74. 74.
    Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal MR (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206:535–548PubMedCrossRefGoogle Scholar
  75. 75.
    Rummel C, Sachot C, Poole S, Luheshi GN (2006) Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain. Am J Physiol Regul Integr Comp Physiol 291:R1316–R1326PubMedGoogle Scholar
  76. 76.
    Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169:2253–2263PubMedGoogle Scholar
  77. 77.
    O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and independent pathways. EMBO J 17:1006–1018PubMedCrossRefGoogle Scholar
  78. 78.
    Mancino A, Lawrence T (2010) Nuclear factor-kappaB and tumor-associated macrophages. Clin Cancer Res 16:784–789PubMedCrossRefGoogle Scholar
  79. 79.
    Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321PubMedCrossRefGoogle Scholar
  80. 80.
    Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235PubMedCrossRefGoogle Scholar
  81. 81.
    Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ (2002) Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21:8404–8413PubMedCrossRefGoogle Scholar
  82. 82.
    Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4:97–105PubMedCrossRefGoogle Scholar
  83. 83.
    Hussain SF, Kong L-Y, Jordan J, Conrad C, Madden T, Fokt I, Priebe W, Heimberger AB (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67:9630–9636PubMedCrossRefGoogle Scholar
  84. 84.
    Sherry MM, Reeves A, Wu JK, Cochran BH (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27:2383–2392PubMedCrossRefGoogle Scholar
  85. 85.
    Brown CE, Starr R, Martinez C, Aguilar B, D’Apuzzo M, Todorov I, Shih CC, Badie B, Hudecek M, Riddell SR, Jensen MC (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69:8886–8893PubMedCrossRefGoogle Scholar
  86. 86.
    Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F, Bruzzone MG, Finocchiaro G (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252PubMedCrossRefGoogle Scholar
  87. 87.
    Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J, Konda B, Black KL, Yu JS (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27:1734–1740PubMedCrossRefGoogle Scholar
  88. 88.
    Li L, Dutra A, Pak E, Labrie JE 3rd, Gerstein RM, Pandolfi PP, Recht LD, Ross AH (2009) EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro Oncol 11:9–21PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) STAT3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57:1458–1467PubMedCrossRefGoogle Scholar
  90. 90.
    Kong LY, Abou-Ghazal MK, Wei J, Chakraborty A, Sun W, Qiao W, Fuller GN, Fokt I, Grimm EA, Schmittling RJ, Archer GE Jr, Sampson JH, Priebe W, Heimberger AB (2008) A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin Cancer Res 14:5759–5768PubMedCrossRefGoogle Scholar
  91. 91.
    Kong L-K, Wei J, Sharma AK, Barr J, Abou-Ghazal MK, Fokt I, Weinberg J, Rao G, Grimm E, Priebe W, Heimberger AB (2008) A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunol Immunother 58:1023–1032PubMedCrossRefGoogle Scholar
  92. 92.
    Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626PubMedCrossRefGoogle Scholar
  93. 93.
    Lin L, Amin R, Gallicano GI, Glasgow E, Jogunoori W, Jessup JM, Zasloff M, Marshall JL, Shetty K, Johnson L, Mishra L, He AR (2009) The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 28:961–972PubMedCrossRefGoogle Scholar
  94. 94.
    Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H, Armstrong B, Bebernitz G, Weng S, Wang L, Ye M, McEachern K, Chen H, Morosini D, Bell K, Alimzhanov M, Ioannidis S, McCoon P, Cao ZA, Yu H, Jove R, Zinda M (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497PubMedCrossRefGoogle Scholar
  95. 95.
    Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321PubMedCrossRefGoogle Scholar
  96. 96.
    Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699PubMedCrossRefGoogle Scholar
  97. 97.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  98. 98.
    Hwang KC, Kim JY, Chang W, Kim DS, Lim S, Kang SM, Song BW, Ha HY, Huh YJ, Choi IG, Hwang DY, Song H, Jang Y, Chung N, Kim SH, Kim DW (2008) Chemicals that modulate stem cell differentiation. Proc Natl Acad Sci USA 105:7467–7471PubMedCrossRefGoogle Scholar
  99. 99.
    Cobbs C, Harkins L, Samanta M, Gillespie G, Bharara S, King P, Nabors L, Cobbs C, Britt W (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350PubMedGoogle Scholar
  100. 100.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 10:10–18PubMedCrossRefGoogle Scholar
  101. 101.
    Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86PubMedCrossRefGoogle Scholar
  102. 102.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Britt WJ, Pieper R, Kraus MH (2007) Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85:271–280PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mustafa Aziz Hatiboglu
    • 1
  • Jun Wei
    • 1
  • Adam Sauh Gee Wu
    • 1
  • Amy B. Heimberger
    • 1
  1. 1.Department of NeurosurgeryThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations