Advertisement

Targeted Oncology

, Volume 5, Issue 4, pp 245–255 | Cite as

EGFR inhibitors in non-small cell lung cancer (NSCLC): the emerging role of the dual irreversible EGFR/HER2 inhibitor BIBW 2992

  • James F. SpicerEmail author
  • Sarah M. Rudman
Review

Abstract

Non-small cell lung cancer (NSCLC) is one of the most lethal types of cancer and is associated with significant mortality and morbidity worldwide. Despite improvements in conventional treatment for NSCLC, survival remains poor and improvements in patient outcome are warranted. Over recent years, basic scientific research has dramatically increased our knowledge of the pathogenesis of lung cancer and allowed us to uncover and understand the cellular pathways involved in this process. This has led to the development of therapies to selectively target these pathways. Among these, the epidermal growth factor receptor (EGFR) tyrosine kinase family and related downstream pathways play a critical role in cancer development and over recent years have become a validated target in NSCLC. The development of monoclonal antibodies and first-generation tyrosine kinase inhibitors (TKIs) targeted towards EGFR has had a considerable impact on patient outcomes. However, despite dramatic and sustained responses and the discovery of specific patient subgroups that may derive clinical benefit, resistance to first-generation EGFR TKIs inevitably develops. A new generation of agents have been developed to provide superior potency of target inhibition and further individualize the treatment of NSCLC. This article reviews EGFR-targeted therapies currently available for use and undergoing clinical development for the treatment of NSCLC, specifically focusing on next generation agents including BIBW 2992, an irreversible dual inhibitor of EGFR and HER2 kinases.

Keywords

Non-small cell lung cancer EGFR-targeted therapies BIBW 2992 

Notes

Acknowledgements

The authors would like to acknowledge the editorial assistance of Ogilvy Healthworld. Boehringer Ingelheim provided financial support for this assistance.

Conflict of interest statement

Dr. Rudman has no conflict of interest to declare. Dr. Spicer has not personally benefited from honoraria from commercial party but has received contributions for research purposes.

References

  1. 1.
    Kung HC, Hoyert DL, Xu J, Murphy SL (2008) Deaths: final data for 2005. Natl Vital Stat Rep 56(10):1–120PubMedGoogle Scholar
  2. 2.
    U.S. Cancer Statistics Working Group (2007) United States Cancer Statistics: 2004 Incidence and Mortality. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute: AtlantaGoogle Scholar
  3. 3.
    American Cancer Society (2009) Cancer Facts and Figures 2009, 15Google Scholar
  4. 4.
    Sculier J-P, Moro-Sibilot D (2009) First- and second-line therapy for advanced nonsmall cell lung cancer. Eur Respir J 33(4):915–930Google Scholar
  5. 5.
    Bedano PM, Hanna NH (2006) Salvage therapy in patients with advanced non-small cell lung cancer. J Thorac Oncol 1(6):582–587CrossRefPubMedGoogle Scholar
  6. 6.
    Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550–6565CrossRefPubMedGoogle Scholar
  7. 7.
    Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y (1996) Diversification of Neu differentiation factor and epidermal growth factor signalling by combinatorial receptor interactions. EMBO J 15(10):2452–2467PubMedGoogle Scholar
  8. 8.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16(10):5276–5287PubMedGoogle Scholar
  9. 9.
    Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M, Yarden Y (1999) The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci U S A 96(9):4995–5000CrossRefPubMedGoogle Scholar
  10. 10.
    Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11):1160–1174CrossRefPubMedGoogle Scholar
  11. 11.
    Dassonville O, Bozec A, Fischel JL, Milano G (2007) EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit Rev Oncol Hematol 62(1):53–61CrossRefPubMedGoogle Scholar
  12. 12.
    Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232CrossRefPubMedGoogle Scholar
  13. 13.
    Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7(7):505–516CrossRefPubMedGoogle Scholar
  14. 14.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354CrossRefPubMedGoogle Scholar
  15. 15.
    Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187CrossRefPubMedGoogle Scholar
  16. 16.
    Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–15CrossRefPubMedGoogle Scholar
  17. 17.
    Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6(9):714–727CrossRefPubMedGoogle Scholar
  18. 18.
    Rossi A, Maione P, Gridelli C (2006) Cetuximab in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 59(2):139–149CrossRefPubMedGoogle Scholar
  19. 19.
    Pirker R, Pereira JR, Szczesna A, von Pawel J, Krzakowski M, Ramlau R, Vynnychenko I, Park K, Yu CT, Ganul V, Roh JK, Bajetta E, O’Byrne K, de Marinis F, Eberhardt W, Goddemeier T, Emig M, Gatzemeier U (2009) Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373(9674):1525–1531CrossRefPubMedGoogle Scholar
  20. 20.
    Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7(Suppl 4):2–8CrossRefPubMedGoogle Scholar
  21. 21.
    Blackhall F, Ranson M, Thatcher N (2006) Where next for gefitinib in patients with lung cancer? Lancet Oncol 7(6):499–507CrossRefPubMedGoogle Scholar
  22. 22.
    Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG, Kaye SB, Gianni L, Harris A, Bjork T, Averbuch SD, Feyereislova A, Swaisland H, Rojo F, Albanell J (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20(21):4292–4302CrossRefPubMedGoogle Scholar
  23. 23.
    Hidalgo M, Siu LL, Nemunaitis J, Rizzo J, Hammond LA, Takimoto C, Eckhardt SG, Tolcher A, Britten CD, Denis L, Ferrante K, Von Hoff DD, Silberman S, Rowinsky EK (2001) Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19(13):3267–3279PubMedGoogle Scholar
  24. 24.
    Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). J Clin Oncol 21(12):2237–2246CrossRefPubMedGoogle Scholar
  25. 25.
    Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149–2158CrossRefPubMedGoogle Scholar
  26. 26.
    Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigas J, Clark GM, Santabarbara P, Bonomi P (2004) Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J Clin Oncol 22(16):3238–3247CrossRefPubMedGoogle Scholar
  27. 27.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132CrossRefPubMedGoogle Scholar
  28. 28.
    Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan EH, Pemberton K, Archer V, Carroll K (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366(9496):1527–1537CrossRefPubMedGoogle Scholar
  29. 29.
    Clark G (2008) Prognostic factors versus predictive factors: examples from a clinical trial of erlotinib. Mol Oncol 1(4):406–412CrossRefPubMedGoogle Scholar
  30. 30.
    Miller VA, Kris MG, Shah N, Patel J, Azzoli C, Gomez J, Krug LM, Pao W, Rizvi N, Pizzo B, Tyson L, Venkatraman E, Ben-Porat L, Memoli N, Zakowski M, Rusch V, Heelan RT (2004) Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 22(6):1103–1109CrossRefPubMedGoogle Scholar
  31. 31.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957CrossRefPubMedGoogle Scholar
  32. 32.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139CrossRefPubMedGoogle Scholar
  33. 33.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500CrossRefPubMedGoogle Scholar
  34. 34.
    Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311CrossRefPubMedGoogle Scholar
  35. 35.
    Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181CrossRefPubMedGoogle Scholar
  36. 36.
    Riely GJ, Politi KA, Miller VA, Pao W (2006) Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 12(24):7232–7241CrossRefPubMedGoogle Scholar
  37. 37.
    Sequist LV, Lynch TJ (2008) EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annu Rev Med 59:429–442CrossRefPubMedGoogle Scholar
  38. 38.
    Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VA (2006) Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 12(3 Pt 1):839–844CrossRefPubMedGoogle Scholar
  39. 39.
    Sequist LV, Bell DW, Lynch TJ, Haber DA (2007) Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 25(5):587–595CrossRefPubMedGoogle Scholar
  40. 40.
    Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA, Bell DW, Huberman MS, Halmos B, Rabin MS, Haber DA, Lynch TJ, Meyerson M, Johnson BE, Janne PA (2006) Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res 12(13):3908–3914CrossRefPubMedGoogle Scholar
  41. 41.
    Yang C, Shih J, Su W, Hsia T, Ho C, Dudek AZ, Terlizzi E, Zhao Y, Shahidi M, Miller VA (2009) BIBW 2992, a novel irreversible EGFR/HER2 tyrosine kinase inhibitor, in chemonaïve patients with adenocarcinoma of the lung and activating EGFR mutations. J Thor Oncol 4 (suppl 1):Abstract A3.3Google Scholar
  42. 42.
    Sasaki H, Endo K, Takada M, Kawahara M, Kitahara N, Tanaka H, Okumura M, Matsumura A, Iuchi K, Kawaguchi T, Kawano O, Yukiue H, Yokoyama T, Yano M, Fujii Y (2007) EGFR exon 20 insertion mutation in Japanese lung cancer. Lung Cancer 58(3):324–328CrossRefPubMedGoogle Scholar
  43. 43.
    Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, Insa A, Massuti B, Gonzalez-Larriba JL, Paz-Ares L, Bover I, Garcia-Campelo R, Moreno MA, Catot S, Rolfo C, Reguart N, Palmero R, Sanchez JM, Bastus R, Mayo C, Bertran-Alamillo J, Molina MA, Sanchez JJ, Taron M (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361(10):958–967CrossRefPubMedGoogle Scholar
  44. 44.
    Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, Kris MG, Sandler AB, Carbone DP, Tsao A, Herbst RS, Heller G, Ladanyi M, Pao W, Johnson DH (2008) Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 26(9):1472–1478CrossRefPubMedGoogle Scholar
  45. 45.
    Sequist LV, Martins R, Spigel D, Grunberg SM, Janne PA, McCollum D, Spira A, Evans T, Johnson BE, Lynch TJ (2007) iTARGET: a phase II trial to assess the response to gefitinib in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) tumors. J Clin Oncol 25(18S):Abstract 7504Google Scholar
  46. 46.
    ClinicalTrials.gov (2008) Phase III study (Tarceva®) vs chemotherapy to treat advanced non-small cell lung cancer (NSCLC) in patients with mutations in the TK domain of EGFR. Available from: www.clinicaltrials.gov. Cited February 1, 2010
  47. 47.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97(9):643–655CrossRefPubMedGoogle Scholar
  48. 48.
    Hirsch FR, Varella-Garcia M, McCoy J, West H, Xavier AC, Gumerlock P, Bunn PA Jr, Franklin WA, Crowley J, Gandara DR (2005) Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol 23(28):6838–6845CrossRefPubMedGoogle Scholar
  49. 49.
    Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, Lorimer I, Zhang T, Liu N, Daneshmand M, Marrano P, da Cunha SG, Lagarde A, Richardson F, Seymour L, Whitehead M, Ding K, Pater J, Shepherd FA (2005) Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 353(2):133–144CrossRefPubMedGoogle Scholar
  50. 50.
    Toschi L, Cappuzzo F (2007) Understanding the new genetics of responsiveness to epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 12(2):211–220CrossRefPubMedGoogle Scholar
  51. 51.
    Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792CrossRefPubMedGoogle Scholar
  52. 52.
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73CrossRefPubMedGoogle Scholar
  53. 53.
    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377CrossRefPubMedGoogle Scholar
  54. 54.
    Bean J, Riely GJ, Balak M, Marks JL, Ladanyi M, Miller VA, Pao W (2008) Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 14(22):7519–7525CrossRefPubMedGoogle Scholar
  55. 55.
    Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, Ladanyi M, Miller VA, Pao W (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12(21):6494–6501CrossRefPubMedGoogle Scholar
  56. 56.
    Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937CrossRefPubMedGoogle Scholar
  57. 57.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signalling. Science 316(5827):1039–1043CrossRefPubMedGoogle Scholar
  58. 58.
    Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD, Bekele BN, Herbst RS, Wistuba II (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 13(10):2890–2896CrossRefPubMedGoogle Scholar
  59. 59.
    Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC, Liu N, Zhang T, Marrano P, Whitehead M, Squire JA, Kamel-Reid S, Seymour L, Shepherd FA, Tsao MS (2008) Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 26(26):4268–4275CrossRefPubMedGoogle Scholar
  60. 60.
    Kokai Y, Myers JN, Wada T, Brown VI, LeVea CM, Davis JG, Dobashi K, Greene MI (1989) Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58(2):287–292CrossRefPubMedGoogle Scholar
  61. 61.
    Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, Di Fiore PP, Kraus MH (1995) Cooperative signalling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10(9):1813–1821PubMedGoogle Scholar
  62. 62.
    Motoyama AB, Hynes NE, Lane HA (2002) The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 62(11):3151–3158PubMedGoogle Scholar
  63. 63.
    Reid A, Vidal L, Shaw H, de Bono J (2007) Dual inhibition of ErbB1 (EGFR/HER1) + ErbB2 (HER2/neu). Eur J Cancer 43(3):481–489CrossRefPubMedGoogle Scholar
  64. 64.
    Xia W, Lau YK, Zhang HZ, Xiao FY, Johnston DA, Liu AR, Li L, Katz RL, Hung MC (1999) Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res 5(12):4164–4174PubMedGoogle Scholar
  65. 65.
    Tateishi M, Ishida T, Kohdono S, Hamatake M, Fukuyama Y, Sugimachi K (1994) Prognostic influence of the co-expression of epidermal growth factor receptor and c-erbB-2 protein in human lung adenocarcinoma. Surg Oncol 3(2):109–113CrossRefPubMedGoogle Scholar
  66. 66.
    Nelson MH, Dolder CR (2007) A review of lapatinib ditosylate in the treatment of refractory or advanced breast cancer. Ther Clin Risk Manag 3(4):665–673PubMedGoogle Scholar
  67. 67.
    Petrelli F, Cabiddu M, Cazzaniga ME, Cremonesi M, Barni S (2008) Targeted therapies for the treatment of breast cancer in the post-trastuzumab era. Oncologist 13(4):373–381CrossRefPubMedGoogle Scholar
  68. 68.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743CrossRefPubMedGoogle Scholar
  69. 69.
    Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J, Chan A, Campone M, Viens P, Davidson N, Gorbounova V, Raats JI, Skarlos D, Newstat B, Roychowdhury D, Paoletti P, Oliva C, Rubin S, Stein S, Geyer CE (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112(3):533–543CrossRefPubMedGoogle Scholar
  70. 70.
    Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65(5):1642–1646CrossRefPubMedGoogle Scholar
  71. 71.
    Buttitta F, Barassi F, Fresu G, Felicioni L, Chella A, Paolizzi D, Lattanzio G, Salvatore S, Camplese PP, Rosini S, Iarussi T, Mucilli F, Sacco R, Mezzetti A, Marchetti A (2006) Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int J Cancer 119(11):2586–2591CrossRefPubMedGoogle Scholar
  72. 72.
    Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, Harris PL, Driscoll DR, Fidias P, Lynch TJ, Rabindran SK, McGinnis JP, Wissner A, Sharma SV, Isselbacher KJ, Settleman J, Haber DA (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 102(21):7665–7670CrossRefPubMedGoogle Scholar
  73. 73.
    Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27(34):4702–4711CrossRefPubMedGoogle Scholar
  74. 74.
    Solca F (2007) Pharmacology and molecular mechanisms of BIBW2992, a potent irreversible dual EGFR/HER2 kinase inhibitor for cancer therapy. Targ Oncol 2(1S):15Google Scholar
  75. 75.
    Solca F, Baum A, Guth B, Colbatzky F, Blech S, Amelsberg A, Himmelsbach F (2005) BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor for cancer therapy. Proceedings, AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Philadelphia, PA. 14–18 November 2005:118 (Abstract A244)Google Scholar
  76. 76.
    Solca F, Schweifer N, Baum A, Rudolph D, Amelsberg A, Himmelsbach F, Beug H (2005) BIBW 2992, an irreversible dual EGFR/HER2 kinase inhibitor, shows activity on L858R/T790M EGFR mutants. Clin Cancer Res 11(23):A242Google Scholar
  77. 77.
    Shimamura T, Gewulich H, Solca F, Wong K (2007) Efficacy of BIBW 2992, a potent irreversible inhibitor of EGFR and HER2 in human NSCLC xenografts and in a transgenic mouse lung-cancer model. Journal of Thoracic Oncology 2(8):380CrossRefGoogle Scholar
  78. 78.
    Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K, Liang MC, Perera SA, Zaghlul S, Borgman CL, Kubo S, Takahashi M, Sun Y, Chirieac LR, Padera RF, Lindeman NI, Janne PA, Thomas RK, Meyerson ML, Eck MJ, Engelman JA, Shapiro GI, Wong KK (2007) Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 12(1):81–93CrossRefPubMedGoogle Scholar
  79. 79.
    Perera SA, Li D, Shimamura T, Raso MG, Ji H, Chen L, Borgman CL, Zaghlul S, Brandstetter KA, Kubo S, Takahashi M, Chirieac LR, Padera RF, Bronson RT, Shapiro GI, Greulich H, Meyerson M, Guertler U, Chesa PG, Solca F, Wistuba II, Wong KK (2009) HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci U S A 106(2):474–479CrossRefPubMedGoogle Scholar
  80. 80.
    Plummer R, Vidal L, Perrett R, Spicer J, Stopfer P, Shahidi M, Temple G, Futreal A, Calvert H, de Bono J (2007) A Phase I and pharmacokinetic (PK) study of BIBW 2992, an oral irreversible dual EGFR/HER2 inhibitor. Eur J Cancer Suppl 5(4):108CrossRefGoogle Scholar
  81. 81.
    Spicer J, Calvert H, Vidal L, Azribi F, Perrett R, Shahidi M, Temple G, Futreal A, De Bono J, Plummer R (2007) Activity of BIBW2992, an oral irreversible dual EGFR/HER2 inhibitor, in non-small cell lung cancer (NSCLC) with mutated EGFR. J Thor Oncol 2(8):S410CrossRefGoogle Scholar
  82. 82.
    Eskens FA, Mom CH, Planting AS, Gietema JA, Amelsberg A, Huisman H, van Doorn L, Burger H, Stopfer P, Verweij J, de Vries EG (2008) A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br J Cancer 98(1):80–85CrossRefPubMedGoogle Scholar
  83. 83.
    Agus DB, Terlizzi E, Stopfer P, Amelsberg A, Gordon MS (2006) A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a continuous schedule in patients with advanced solid tumours. J Clin Oncol 24(18S):Abstract 2074Google Scholar
  84. 84.
    Lewis N, Marshall J, Amelsberg A, Cohen RB, Stopfer P, Hwang J, Malik S (2006) A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a 3 week on 1week off schedule in patients with advanced solid tumours. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings. Part I. 24(18S (June 20 supplement)):Abstract 3091Google Scholar
  85. 85.
    Shaw H, Plummer R, Vidal L, Perrett R, Pilkington M, Temple G, Fong P, Amelsberg A, Calvert H, de Bono J (2006) A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in patients with advanced solid tumours. J Clin Oncol 24(18S):3027Google Scholar
  86. 86.
    Stopfer P, Schaefer HG, Amelsberg A, Huisman H, Eskens F, Gietema JA, Briscoe J, Lewis N, Cohen RB, Marshall J, Verweij J (2005) Pharmacokinetic results from two phase I dose escalation studies of once daily oral treatment with BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor in patients with advanced tumours. Proceedings, AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics:171(Abstract B172)Google Scholar
  87. 87.
    Shih JY, Yang CH, Su WC, Hsia TC, Tsai CM, Chen YM, Chang H, Terlizzi E, Shahidi M, Miller VA (2009) A Phase II study of BIBW 2992, a novel irreversible dual EGFR and HER2 tyrosine kinase inhibitor (TKI), in patients with adenocarcinoma of the lung and activating EGFR mutations after failure of 1 line of chemotherapy (LUX-Lung 2). J Clin Oncol 27 (Suppl 15):Abstract 8013Google Scholar
  88. 88.
    ClinicalTrials.gov (2008) BIBW 2992 (TOVOK) and BSC versus placebo and BSC in non-small cell lung cancer patients failing erlotinib or gefitinib (LUX-LUNG 1). Available from: www.clinicalstrial.gov. Cited Dec 4, 2008
  89. 89.
    De Greve J, Teugels E, Geers C, De Mey J, In’t Veld P, Decoster L, Taton M, Shahidi M, Galdermans D, Schallier D (2009) Activity of BIBW 2992, an irreversible inhibitor of EGFR and HER2, in adenocarcinoma of the lung with HER2neu kinase domain mutations. Eur J Cancer Suppl 7(2):555CrossRefGoogle Scholar
  90. 90.
    Wong KK (2007) HKI-272 in non small cell lung cancer. Clin Cancer Res 13(15 Pt 2):s4593–4596CrossRefPubMedGoogle Scholar
  91. 91.
    Wong KK, Fracasso PM, Bukowski RM, Munster PN, Lynch T, Abbas R, Quinn SE, Zacharchuk C, Burris H (2006) HKI-272, an irreversible pan erbB receptor tyrosine kinase inhibitor: preliminary phase 1 results in patients with solid tumors. J Clin Oncol 24(18S):3018Google Scholar
  92. 92.
    Yoshimura N, Kudoh S, Kimura T, Mitsuoka S, Matsuura K, Hirata K, Matsui K, Negoro S, Nakagawa K, Fukuoka M (2006) EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 51(3):363–368CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Great Maze PondKings College London, Guy’s Hospital CampusLondonUK

Personalised recommendations