Targeted Oncology

, Volume 4, Issue 3, pp 169–181 | Cite as

Imaging applications of nanotechnology in cancer

  • U. Ayanthi Gunasekera
  • Quentin A. Pankhurst
  • Michael Douek


Consider a single agent capable of diagnosing cancer, treating it simultaneously and monitoring response to treatment. Particles of this agent would seek cancer cells accurately and destroy them without harming normal surrounding cells. Science fiction or reality? Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology are bringing us closer to the development of dual and multi-functional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. Examples include contrast agents capable of delivering targeted drugs to specific epithelial receptors. This opens the way for targeted chemotherapy which could minimise systemic side-effects, avoid damage to benign tissues and also reduce the therapeutic treatment dose of a drug required. Most of the current research is still at the pre-clinical stage, with very few instances of bench to bedside research. In order to encourage more translational research, a fundamental change is required to consider the current clinical challenges and then look at ways in which nanotechnology can address these.


Nanotechnology Nanoparticles Imaging Cancer 


Conflict of interest statement

No funds were received in support of this study.


  1. 1.
    Feynman RP (1959) There’s plenty of room at the bottom. Presented at the Annual Meeting of the American Physical Society, December 29, 1959, California Institute of Technology, Pasadena, CA).
  2. 2.
    Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433CrossRefPubMedGoogle Scholar
  3. 3.
    Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed 3(5):703–717CrossRefPubMedGoogle Scholar
  4. 4.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefPubMedGoogle Scholar
  5. 5.
    Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4):309–316CrossRefPubMedGoogle Scholar
  6. 6.
    Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667CrossRefPubMedGoogle Scholar
  7. 7.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMedGoogle Scholar
  8. 8.
    McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefPubMedGoogle Scholar
  9. 9.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefPubMedGoogle Scholar
  10. 10.
    Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46(46):8836–8839CrossRefPubMedGoogle Scholar
  11. 11.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377CrossRefPubMedGoogle Scholar
  12. 12.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22CrossRefPubMedGoogle Scholar
  13. 13.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefPubMedGoogle Scholar
  14. 14.
    McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2(2):153–167CrossRefPubMedGoogle Scholar
  15. 15.
    Dinh P, Sotiriou C, Piccart MJ (2007) The evolution of treatment strategies: aiming at the target. Breast 16(Suppl 2):S10–S16CrossRefPubMedGoogle Scholar
  16. 16.
    Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456CrossRefPubMedGoogle Scholar
  18. 18.
    Menon U, Jacobs IJ (2000) Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol 12(1):39–42CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110CrossRefPubMedGoogle Scholar
  20. 20.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRefPubMedGoogle Scholar
  21. 21.
    Harisinghani MG, Weissleder R (2004) Sensitive, noninvasive detection of lymph node metastases. PLoSMed 1(3):e66Google Scholar
  22. 22.
    Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 1(2):209–217CrossRefPubMedGoogle Scholar
  23. 23.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240CrossRefPubMedGoogle Scholar
  24. 24.
    Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20(15):6396–6400CrossRefPubMedGoogle Scholar
  25. 25.
    Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191CrossRefPubMedGoogle Scholar
  26. 26.
    Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50(4):493–496CrossRefPubMedGoogle Scholar
  27. 27.
    Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6CrossRefPubMedGoogle Scholar
  28. 28.
    Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb) 25:3144–3146CrossRefGoogle Scholar
  29. 29.
    Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396CrossRefPubMedGoogle Scholar
  30. 30.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998CrossRefPubMedGoogle Scholar
  31. 31.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338CrossRefPubMedGoogle Scholar
  32. 32.
    Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343PubMedCrossRefGoogle Scholar
  33. 33.
    Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007CrossRefPubMedGoogle Scholar
  34. 34.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X et al (2007) In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52CrossRefPubMedGoogle Scholar
  36. 36.
    Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346CrossRefPubMedGoogle Scholar
  37. 37.
    Zoarski GH, Parker JR, Lufkin RB, Harnsberger HR, Rhoda CH (1992) Efficacy of gadoteridol for magnetic resonance imaging of extracranial head and neck pathology. Invest Radiol 27(Suppl 1):S53–S57PubMedGoogle Scholar
  38. 38.
    Vitols S (1991) Uptake of low-density lipoprotein by malignant cells—possible therapeutic applications. Cancer Cells 3(12):488–495PubMedGoogle Scholar
  39. 39.
    Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD et al (2006) Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8(6):488–498CrossRefPubMedGoogle Scholar
  40. 40.
    Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35(Pt 1):61–67PubMedGoogle Scholar
  41. 41.
    Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW et al (2004) Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96(9):703–708PubMedCrossRefGoogle Scholar
  42. 42.
    Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252CrossRefPubMedGoogle Scholar
  43. 43.
    Vogel A (1997) Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys Med Biol 42(5):895–912CrossRefPubMedGoogle Scholar
  44. 44.
    Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38CrossRefPubMedGoogle Scholar
  45. 45.
    Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365CrossRefPubMedGoogle Scholar
  46. 46.
    Landmark KJ, Dimaggio S, Ward J, Kelly C, Vogt S, Hong S et al (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-conjugated dendrimers. ACS Nano 2(4):773–783CrossRefPubMedGoogle Scholar
  47. 47.
    Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2(1):23–39CrossRefPubMedGoogle Scholar
  48. 48.
    Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY et al (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745CrossRefPubMedGoogle Scholar
  49. 49.
    Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238CrossRefPubMedGoogle Scholar
  50. 50.
    Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81(19):5985–5988CrossRefPubMedGoogle Scholar
  51. 51.
    Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222CrossRefPubMedGoogle Scholar
  52. 52.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefPubMedGoogle Scholar
  53. 53.
    Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomed 3(4):579–592CrossRefPubMedGoogle Scholar
  54. 54.
    Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154CrossRefPubMedGoogle Scholar
  55. 55.
    Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45(48):8160–8162CrossRefPubMedGoogle Scholar
  56. 56.
    Joshi T, Douek M, Pankhurst QA, Hattersley S, Brazdeikis A, Hall-Craggs M, De Vita E, Bainbridge A, Sainsbury R, Sharma A (2007) Magnetic nanoparticles for detecting sentinel lymph nodes. Eur J Surg Oncol 33(9):1135Google Scholar
  57. 57.
    Statistical Information Team (2009) Cancer research UK, breast cancer.
  58. 58.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97CrossRefPubMedGoogle Scholar
  59. 59.
    Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMedGoogle Scholar
  60. 60.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070CrossRefPubMedGoogle Scholar
  61. 61.
    Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48(15):2759–2763CrossRefPubMedGoogle Scholar
  62. 62.
    Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009) Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69(3):1182–1189CrossRefPubMedGoogle Scholar
  63. 63.
    Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F et al (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25(4):145–152CrossRefPubMedGoogle Scholar
  64. 64.
    Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423CrossRefPubMedGoogle Scholar
  65. 65.
    Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378CrossRefPubMedGoogle Scholar
  66. 66.
    Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274CrossRefPubMedGoogle Scholar
  67. 67.
    Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008CrossRefPubMedGoogle Scholar
  68. 68.
    Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911CrossRefPubMedGoogle Scholar
  69. 69.
    Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM et al (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63CrossRefPubMedGoogle Scholar
  70. 70.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • U. Ayanthi Gunasekera
    • 1
  • Quentin A. Pankhurst
    • 2
  • Michael Douek
    • 1
    • 3
  1. 1.Department of Research Oncology, Division of Cancer StudiesKing’s College LondonLondonUK
  2. 2.Davy-Faraday Research LaboratoryThe Royal Institution of Great BritainLondonUK
  3. 3.Department of Research Oncology, Division of Cancer StudiesKing’s College London, Guy’s HospitalLondonUK

Personalised recommendations