Targeted Oncology

, Volume 2, Issue 4, pp 199–210 | Cite as

Molecular targeted therapy for advanced hepatocellular carcinoma

Review

Abstract

Systemic anticancer therapy for hepatocellular carcinoma (HCC) is limited by intrinsic drug resistance and accompanying liver dysfunction. However, recent advances in molecular targeted therapy (MTT) have shed light on the treatment of advanced HCC. A recent randomized, placebo-controlled trial demonstrated that sorafenib, a multi-target tyrosine kinase inhibitor, prolonged overall survival and time-to-progression in patients with advanced HCC. This breakthrough highlights the potential of MTT targeting hepatocarcinogenic pathways, such as the Raf/MAPK/ERK pathway, angiogenic pathways and the EGFR signaling pathway. This review discusses the current status and the potential of developing novel MTTs for advanced HCC.

Keywords

Hepatocellular carcinoma Molecular targeted therapy 

References

  1. 1.
    Jemal A, Murray T, Ward E et al (2005) Cancer Statistics 2005. CA Cancer J Clin 55:10–30PubMedCrossRefGoogle Scholar
  2. 2.
    Marrero JA (2005) Hepatocellular carcinoma. Curr Opin Gastroenterol 21:308–312PubMedGoogle Scholar
  3. 3.
    Chang MH, Chen CJ, Lai MS et al (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336:1855–1859PubMedGoogle Scholar
  4. 4.
    Lee CL, Hsieh KS, Ko YC (2003) Trends in the incidence of hepatocellular carcinoma in boys and girls in Taiwan after large-scale hepatitis B vaccination. Cancer Epidemiol Biomarkers Prev 12:57–59PubMedGoogle Scholar
  5. 5.
    Williams R (2006) Global changes on liver diseases. Hepatology 44:521–526PubMedGoogle Scholar
  6. 6.
    Perz JF, Armstrong GL, Farrington LA et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538PubMedGoogle Scholar
  7. 7.
    Nagasue N, Kohno H, Chang YC et al (1993) Liver resection for hepatocellular carcinoma. Results of 229 consecutive patients during 11 years. Ann Surg 217: 375–385PubMedGoogle Scholar
  8. 8.
    Yanaga K (2004) Current status of hepatic resection for hepatocellular carcinoma. J Gastroenterol 39:919–926PubMedGoogle Scholar
  9. 9.
    Hsu C, Cheng JC, Cheng AL (2004) Recent advances in non-surgical treatment for advanced hepatocellular carcinoma (HCC). J Formos Med Assoc 103:483–495PubMedGoogle Scholar
  10. 10.
    Zhu AX (2006) Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist 11:790–800PubMedGoogle Scholar
  11. 11.
    Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370PubMedGoogle Scholar
  12. 12.
    Sridhar R, Hanson-Painton O, Cooper DR (2000) Protein kinases as therapeutic targets. Pharm Res 17:1345–1353PubMedGoogle Scholar
  13. 13.
    Nobel ME, Endicott JA, Johnson, LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805Google Scholar
  14. 14.
    Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Eng J Med 344:1031–1037Google Scholar
  15. 15.
    Fukuoka M, Yano S, Giaccone G et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 21:2237–2246PubMedGoogle Scholar
  16. 16.
    Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792PubMedGoogle Scholar
  17. 17.
    Koh JS, Trent J, Chen L et al (2004) Gastrointestinal stromal tumors: overview of pathologic features, molecular biology, and therapy with imatinib mesylate. Histol Histopathol 19:565–574PubMedGoogle Scholar
  18. 18.
    Saltz LB, Meropol NJ, Loehrer PJ Sr et al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208PubMedGoogle Scholar
  19. 19.
    Druker BJ, Guihot F, O’Brien SG et al (2006) Five-year follow-up of receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417PubMedGoogle Scholar
  20. 20.
    Yang JC (2004) Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res 10:6367S–6370SPubMedGoogle Scholar
  21. 21.
    Hainsworth JD, Sosman JA, Raefsky EL et al (2005) Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 23:7889–7896PubMedGoogle Scholar
  22. 22.
    Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24PubMedGoogle Scholar
  23. 23.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedGoogle Scholar
  24. 24.
    Thomas MB, Abbruzzese JL (2005) Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 23:8093–8108PubMedGoogle Scholar
  25. 25.
    Avila MA, Berasain C, Sangro B et al (2006) New therapies for hepatocellular carcinoma. Oncogene 25:3866–3884PubMedGoogle Scholar
  26. 26.
    Breuhahn K, Longerich T, Schirmacher P (2006) Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 25:3787–3800PubMedGoogle Scholar
  27. 27.
    Ito Y, Sasaki Y, Horimoto M et al (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27:951–958PubMedGoogle Scholar
  28. 28.
    Huynh H, Nguyen TT, Chow KH et al (2003) Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)–MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol 8:3–19Google Scholar
  29. 29.
    Lee HC, Tian B, Sedivy JM et al (2006) Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 131:1208–1217PubMedGoogle Scholar
  30. 30.
    Erhardt A, Hassan M, Heintges T et al (2002) Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 292:272–284PubMedGoogle Scholar
  31. 31.
    Chung TW, Lee YC, Kim CH (2004) Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J 18:1123–1125PubMedGoogle Scholar
  32. 32.
    Bataller R, Paik YH, Lindquist JN et al (2004) Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology 126:529–540PubMedGoogle Scholar
  33. 33.
    Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral anti-tumor activity and targets the Raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedGoogle Scholar
  34. 34.
    Kane RC, Farrell AT, Saber H et al (2006) Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 12:7271–7278PubMedGoogle Scholar
  35. 35.
    Abou-Alfa GK, Schwartz L, Ricci S et al (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:4293–4300PubMedGoogle Scholar
  36. 36.
    Llovet J, Ricci S, Mazzaferro V et al (2007) Randomized phase III trial of sorafenib versus placebo in patients with advanced hepatocellular carcinoma (HCC). Pro Am Soc Clin Oncol late-breaking abstract 1Google Scholar
  37. 37.
    Yamaguchi R, Yano H, Iemura A et al (1998) Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28:68–77PubMedGoogle Scholar
  38. 38.
    Mise M, Arii S, Higashituji H et al (1996) Clinical significance of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study. Hepatology 23:455–464PubMedGoogle Scholar
  39. 39.
    Chow NH, Hsu PI, Lin XZ et al (1997) Expression of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study. Hum Pathol 28:698–703PubMedGoogle Scholar
  40. 40.
    Park YN, Kim YB, Yang KM et al (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep heaptocarcinogenesis. Arch Pathol Lab Med 124:1061–1065PubMedGoogle Scholar
  41. 41.
    Li Q, Xu B, Fu L et al (2006) Correlation of four vascular specific growth factors with carcinogenesis and portal vein tumor thrombus formation in human hepatocellular carcinoma. J Exp Clin Cancer Res 25:403–409PubMedGoogle Scholar
  42. 42.
    El-Assal ON, Yamanoi A, Ono T et al (2001) The clinicopathological significance of heparanase and basic fibroblast growth factor expression in hepatocellular carcinoma. Clin Cancer Res 7:1299–1305PubMedGoogle Scholar
  43. 43.
    Poon RT, Hg IO, Lau C et al (2001) Correlation of serum basic fibroblast growth factor levels with clinicopathological features and postoperative recurrence in hepatocellular carcinoma. Am J Surg 182:298–234Google Scholar
  44. 44.
    Tsou AP, Wu KM, Tsen TY et al (1998) Parallel hybridization analysis of multiple protein kinase. Genomics 50:331–340PubMedGoogle Scholar
  45. 45.
    Tanaka S, Mori M, Sakamoto Y et al (1999) Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345PubMedCrossRefGoogle Scholar
  46. 46.
    Mitsuhashi N, Shimizu H, Ohtsuka M et al (2003) Angiopoietin and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 37:1105–1113PubMedGoogle Scholar
  47. 47.
    Harada T, Arii S, Mise M et al (1998) Membrane-type matrix metalloproteinase-1 (MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepatol 28:231–239PubMedGoogle Scholar
  48. 48.
    Ogasawara S, Yano H, Momosaki S et al (2005) Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep 13:1043–1048PubMedGoogle Scholar
  49. 49.
    Suzuki K, Hayashi N, Miyamoto Y et al (1996) Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res 56:3004–3009PubMedGoogle Scholar
  50. 50.
    Mise M, Arii S, Higashituji H et al (1996) Clinical significance of vascular endothelial growth factor and basic fibroblast growth facto gene expression in liver tumor. Hepatology 23:455–464PubMedGoogle Scholar
  51. 51.
    Li XM, Tang ZY, Zhou G et al (1998) Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer 17:13–17Google Scholar
  52. 52.
    Tshii Y, Nakasato Y, Kobayashi S et al (2003) A study on angiogenesis-related matrix metalloproteinase networks in primary hepatocellular carcinoma. J Exp Clin Cancer Res 22:461–470Google Scholar
  53. 53.
    Jiang YF, Yang ZH, Hu JQ (2000) Recurrence or metastasis of HCC: predictors, early detection and experimental antiangiogenic therapy. World J Gastroenterol 6:61–65PubMedGoogle Scholar
  54. 54.
    Dhar DK, Ono T, Yamanoi A et al (2002) Serum endostatin predicts tumor vascularity in hepatocellular carcinoma. Cancer 95:2188–2195PubMedGoogle Scholar
  55. 55.
    D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085PubMedGoogle Scholar
  56. 56.
    Kruse FE, Joussen AM, Rohrschneider K et al (1998) Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Opthalmol 236:461–466Google Scholar
  57. 57.
    Kumar S, Witzig TE, Dispenzieri A et al (2004) Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 18:624–627PubMedGoogle Scholar
  58. 58.
    Fine HA, Figg WD, Jaeckle K et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–715PubMedGoogle Scholar
  59. 59.
    Little RF, Wyvill KM, Pluda JM et al (2000) Activity of thalidomide in AIDS-related Kaposi sarcoma. J Clin Oncol 18:2593–2602PubMedGoogle Scholar
  60. 60.
    Hsu C, Chen CN, Chen LT et al (2003) Low-dose thalidomide treatment for advanced hepatocellular carcinoma. Oncology 65:242–249PubMedGoogle Scholar
  61. 61.
    Patt YZ, Hassan MM, Lozano RD et al (2005) Thalidomide in the treatment of patients with hepatocellular carcinoma: a phase II trial. Cancer 103:749–755PubMedGoogle Scholar
  62. 62.
    Lin AY, Brophy N, Fisher GA et al (2005) Phase II study of thalidomide in patients with unresectable hepatocellular carcinoma. Cancer 103:119–125PubMedGoogle Scholar
  63. 63.
    Chiou HE, Wang TE, Wang YY et al (2006) Efficacy and safety of thalidomide in patients with hepatocellular carcinoma. World J Gastroenterol 12:6955–6960PubMedGoogle Scholar
  64. 64.
    Hsu C, Chen CN, Chen LT et al (2005) Effect of thalidomide in hepatocellular carcinoma: assessment with power Doppler US and analysis of circulating angiogenic factors. Radiology 235:509–516PubMedGoogle Scholar
  65. 65.
    Wang J, Chen LT, Tsang YM et al (2004) Dynamic contrast-enhanced MRI analysis of perfusion changes in advanced hepatocellular carcinoma treated with an antiangiogenic agent: a preliminary study. AJR Am J Roentgenol 183:713–719PubMedGoogle Scholar
  66. 66.
    Hussein MA (2006) Thromboembolism risk reduction in multiple myeloma patients treated with immunomodulatory drug combinations. Thromb Haemost 95:924–930PubMedGoogle Scholar
  67. 67.
    Ho CH (1997) Prevalence of activated protein C resistance in the Chinese population. Thromb Res 88:409–412PubMedGoogle Scholar
  68. 68.
    Ng IO, Poon RT, Lee JM et al (2001) Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol 116:838–845PubMedGoogle Scholar
  69. 69.
    Liu Y, Poon RT, Li Q et al (2005) Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 65:3691–3699PubMedGoogle Scholar
  70. 70.
    Schwartz JD, Schwartz M, Lehrer D et al (2005) Bevacizumab in hepatocellular carcinoma (HCC) in patients without metastasis and without invasion of the portal vein. Pro Am Soc Clin Oncol: abstract 4122Google Scholar
  71. 71.
    Schwartz JD, Schwartz M, Lehrer D et al (2006) Bevacizumab in hepatocellular carcinoma in patients without invasion of the portal vein. Pro Am Soc Clin Oncol: abstract 4144Google Scholar
  72. 72.
    Kabbinavar F, Hurwitz H, Fehrenbacher L et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leocovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21:60–65PubMedGoogle Scholar
  73. 73.
    Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small cell lung cancer. J Clin Oncol 22:2184–2191PubMedGoogle Scholar
  74. 74.
    Goodman VL, Rock EP, Dagher R et al (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 13:1367–1373PubMedGoogle Scholar
  75. 75.
    Faivre SJ, Raymond E, Douillard J et al (2007) Assessment of safety and drug-induced tumor necrosis with sunitinib in patients with unresectable hepatocellular carcinoma (HCC). Pro Am Soc Clin Oncol: abstract 3546Google Scholar
  76. 76.
    Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Semin Oncol 33:369–385PubMedGoogle Scholar
  77. 77.
    Ono M, Morisawa K, Nie J (1998) Transactivation of transforming growth factor alpha gene by hepatitis B virus preS1. Cancer Res 58:1813–1816PubMedGoogle Scholar
  78. 78.
    Sato Y, Kato J, Takimoto R et al (2006) Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor alpha expression via activation of nuclear factor-kappaB. Gut 55:1801–1808PubMedGoogle Scholar
  79. 79.
    Jakubczak JL, Chisari FV, Merlino G (1997) Synergy between transforming growth factor alpha and hepatitis B virus surface antigen in hepatocellular proliferation and carcinogenesis. Cancer Res 57:3606–3611PubMedGoogle Scholar
  80. 80.
    Hopfner M, Sutter AP, Huether A et al (2004) Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J Hepatol 41:1008–1016PubMedGoogle Scholar
  81. 81.
    Huether A, Hopfner M, Sutter AP et al (2005) Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol 43:661–669PubMedGoogle Scholar
  82. 82.
    Kiss A, Wang NJ, Xie JP et al (1997) Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res 3:1059–1066PubMedGoogle Scholar
  83. 83.
    Hsu C, Huang CL, Hsu HC et al (2002) HER-2/neu overexpression is rare in hepatocellular carcinoma and not predictive of anti-HER-2/neu regulation of cell growth and chemosensitivity. Cancer 94:415–420PubMedGoogle Scholar
  84. 84.
    Su MC, Lien HC, Jeng YM (2005) Absence of epidermal growth factor receptor exon 18–21 mutation in hepatocellular carcioma. Cancer Lett 224:117–121PubMedGoogle Scholar
  85. 85.
    Philip PA, Mahoney MR, Allmer C et al (2005) Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 23:6657–6663PubMedGoogle Scholar
  86. 86.
    Thomas MB, Ghadha R, Glover K et al (2007) Phase II study of erlotinib on patients with unresectable hepatocellular carcinoma. Cancer (in press)Google Scholar
  87. 87.
    Ramanathan RK, Belani CP, Singh DA et al (2006) Phase II study of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase 1 and 2 (Her2/Neu) in patients (pts) with advanced biliary tree cancer (BTC) or hepatocellular cancer (HCC). A California Consortium (CCC-P) Trial. Pro Am Soc Clin Oncol: abstract 4010Google Scholar
  88. 88.
    Vergote IB, Y Humblet, van Cutsem E et al (2005) A multicenter phase II trial of gefitinib 500 mg/day in 193 patients with advanced epidermal growth factor receptor-positive solid tumors who had failed previous chemotherapy: interim data. Proc Am Soc Clin Oncol: abstract 3162Google Scholar
  89. 89.
    O’Dwyer PJ, Gianotonio BJ, Levy DE et al (2006) Gefitinib in advanced unresectable hepatocellular carcinoma: results from the Eastern Cooperative Oncology Group’s Study E1203. Proc Am Soc Clin Oncol: abstract 4143Google Scholar
  90. 90.
    Gruenwald V, Wilkens L, Gebel M et al (2006) A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma. Pro Am Soc Clin Oncol: abstract 14079Google Scholar
  91. 91.
    Zhu AX, Stuart K, Blaszkowsky LS et al (2007) Phase 2 study of cetuximab in patients with advanced HCC. Cancer 110:581–589Google Scholar
  92. 92.
    Darin M, Cao Y, Greten FR et al (2002) NF-kappa B in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310Google Scholar
  93. 93.
    Arsura M, Cavin LG (2005) Nuclear factor-kappa B and liver carcinogenesis. Cancer Lett 229:157–169PubMedGoogle Scholar
  94. 94.
    Diao J, Garces R, Richardson CD (2001) X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 12:189–205PubMedGoogle Scholar
  95. 95.
    Kato N, Yoshida H, Kioko Ono-Nita S et al (2000) Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 32:405–412PubMedGoogle Scholar
  96. 96.
    Tai DI, Tsai SL, Chen YM et al (2000) Activation of nuclear factor kappa B in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 31:656–664PubMedGoogle Scholar
  97. 97.
    Tai DI, Tsai SL, Chang YH et al (2000) Constitutive activation of nuclear factor kappa B in hepatocellular carcinoma. Cancer 89:2274–2281PubMedGoogle Scholar
  98. 98.
    Chan CF, Yau TO, Jin DY et al (2004) Evaluation of nuclear factor-kappa B, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clin Cancer Res 10:4140–4149PubMedGoogle Scholar
  99. 99.
    Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Dis 3:17–26Google Scholar
  100. 100.
    Richardson PG, Barlogie B, Berenson J, et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedGoogle Scholar
  101. 101.
    Chen KF, Yu CH, Chen PJ et al (2006) The inhibition of PI3K/Akt pathway as a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Eur J Cancer 4:148Google Scholar
  102. 102.
    Chiao PJ, Na R, Niu J et al (2002) Role of Rel/NF-κB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer 95:1696–1705PubMedGoogle Scholar
  103. 103.
    Hegewisch-Becker S, Sterneck M, Schubert U et al (2004) Phase I/II trial of bortezomib in patients with unresectable hepatocellular carcinoma (HCC). Pro Am Soc Clin Oncol: abstract 4089Google Scholar
  104. 104.
    Olivier S, Robe P, Bours V (2006) Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 72:1054–1068PubMedGoogle Scholar
  105. 105.
    Chuang SE, Kuo ML, Hsu CH et al (2000) Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 21:331–335PubMedGoogle Scholar
  106. 106.
    Kern MA, Schubert D, Sahi D et al (2002) Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatology 36:885–894PubMedGoogle Scholar
  107. 107.
    Yu J, Qiao L, Zimmermann L et al (2006) Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo. Hepatology 43:134–143PubMedGoogle Scholar
  108. 108.
    Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348PubMedGoogle Scholar
  109. 109.
    Vignot S, Faivre S, Aguirre D et al (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537PubMedGoogle Scholar
  110. 110.
    Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25:6436–6446PubMedGoogle Scholar
  111. 111.
    Sahin F, Kannangai R, Adegbola O et al (2004) mTOR and P70S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10:8421–8425PubMedGoogle Scholar
  112. 112.
    Fujiwara Y, Hoon DS, Yamada T et al (2000) PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinoma. Jpn J Cancer Res 92:287–292Google Scholar
  113. 113.
    Hu TH, Huang CC, Lin PR et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97:1929–1940PubMedGoogle Scholar
  114. 114.
    Rizell M, Cahlin C, Olausson M et al (2006) mTOR inhibition affects primary liver cancer. Pro Am Soc Clin Oncol: abstract 14106Google Scholar
  115. 115.
    Carmena M, Earnshaw MC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854PubMedGoogle Scholar
  116. 116.
    Jeng YM, Peng SY, Lin CY et al (2004) Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10:2065–2071PubMedGoogle Scholar
  117. 117.
    Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936PubMedGoogle Scholar
  118. 118.
    Schellens JH, Boss D, Witteveen PO et al (2006) Phase I and pharmacological study of the novel aurora kinase inhibitor AZD1152. Pro Am Soc Clin Oncol: abstract 3008Google Scholar
  119. 119.
    Giles F, Cortes J, Bergstrom DA et al (2006) MK-0457, a novel multikinase inhibitor, is active in patients with chronic myeloid leukemia (CML) and acute lymphocytic leukemia (ALL) with the T315I BCR-ABL resistance mutation and patients with refractory JAK-2 positive myeloproliferative diseases (MPD). Blood 108: abstract 253Google Scholar
  120. 120.
    Lin ZZ, Hsu CH, Hsu C et al (2006) VE-465, a novel small-molecule inhibitor of the Aurora kinases, shows anticancer effects in human hepatocellular carcinoma. Proc Am Assoc Cancer Res: abstract LB 279Google Scholar
  121. 121.
    Tornillo L, Terracciano LM (2006) An update on molecular genetics of gastrointestinal stromal tumours. J Clin Pathol 59:557–563PubMedGoogle Scholar
  122. 122.
    Lee ES, Han EM, Kim YS et al (2005) Occurrence of c-Kit+ tumor cells in hepatitis B virus-associated hepatocellular carcinoma. Am J Clin Pathol 124:31–36PubMedGoogle Scholar
  123. 123.
    Potti A, Ganti AK, Tendulkar K et al (2003) Her-2/neu and CD117 (C-kit) overexpression in hepatocellular and pancreatic carcinoma. Anticancer Res 23:2671–2674PubMedGoogle Scholar
  124. 124.
    Chung CY, Yeh KT, Hsu NC et al (2005) Expression of c-kit protooncogene in human hepatocellular carcinoma. Cancer Lett 217:231–236PubMedGoogle Scholar
  125. 125.
    Savage DG, Antman KH (2003) Imatinib mesylate—a new oral targeted therapy. N Engl J Med 346:683–694Google Scholar
  126. 126.
    Armbrust T, Baumhoer D, Werner J et al (2005) Treatment of hepatocellular carcinoma (HCC) with the tyrosine kinase inhibitor imatinib. Pro Am Soc Clin Oncol: abstract 4210Google Scholar
  127. 127.
    Lin AY, Fisher G, So S et al (2005) A phase II study of imatinib mesylate (IM) in patients (pts) with unresectable hepatocellular carcinoma (HCC). Pro Am Soc Clin Oncol: abstract 4223Google Scholar
  128. 128.
    Eckel F, von Delius S, Dobritz M et al (2005) Pharmacokinetic (PK) and clinical phase II trial of imatinib in patients with impaired liver function and advanced hepatocellular carcinoma (HCC). Oncology 69:363–371PubMedGoogle Scholar
  129. 129.
    Thomas MB, Chadha R, Iwasaki M et al (2007) The combination of bevacizumab (B) and erlotinib (E) shows significant biologic activity in patients with advanced hepatocellular carcinoma (HCC). Pro Am Soc Clin Oncol: abstract 4567Google Scholar
  130. 130.
    Kabbinavar FF, Schulz J, McCleod M et al (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23:3697–3705PubMedGoogle Scholar
  131. 131.
    Hurwitz HI, Fehrenbacher L, Hainsworth JD et al (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23:3502–3508PubMedGoogle Scholar
  132. 132.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550PubMedGoogle Scholar
  133. 133.
    Zhu AX, Blaszkowsky LS, Ryan DP et al (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:1898–1903PubMedGoogle Scholar
  134. 134.
    Sun W, Haller DG, Mykulowycz K et al (2007) Combination of capecitabine, oxaliplatin with bevacizumab in treatment of advanced hepatocellular carcinoma (HCC): a phase II study. Pro Am Soc Clin Oncol: abstract 4574Google Scholar
  135. 135.
    Gasparini G (2001) Metronomic scheduling: the future of chemotherapy. Lancet Oncol 2:733–740PubMedGoogle Scholar
  136. 136.
    Emmenegger U, Man S, Shaked Y et al (2004) A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 64: 3994–4000PubMedGoogle Scholar
  137. 137.
    Hsu CH, Yang TS, Hsu C et al (2007) Modified-dose capecitabine+bevacizumab for the treatment of advanced/metastatic hepatocellular carcinoma (HCC): a phase II, single-arm study. Proc Am Soc Clin Oncol: abstract 15190Google Scholar
  138. 138.
    Jeong W, Chun HG, Cer D et al (2006) A combination of capecitabine and thalidomide in patients with hepatocellular carcinoma. Proc Am Soc Clin Oncol 24: abstract 4142Google Scholar
  139. 139.
    Qin LX, Tang ZY (2004) Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: a review of the literature. J Cancer Res Clin Oncol 130:497–513PubMedGoogle Scholar
  140. 140.
    Korn EL, Arbuck SG, Pluda JM et al (2001) Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol 19:265–272PubMedGoogle Scholar
  141. 141.
    Johnson JR, Williams G, Pazdur R (2003) End points and United States Food and Drug Administration approval of oncology drugs. J Clin Oncol 21:1404–1411PubMedGoogle Scholar
  142. 142.
    Stadler WM (2006) New targets, therapies, and toxicities: lessons to be learned. J Clin Oncol 24:4–5PubMedGoogle Scholar
  143. 143.
    Roberts TG Jr, Lynch TJ Jr, Chabner BA (2003) The phase III trial in the era of targeted therapy: unraveling the “go or no go” decision. J Clin Oncol 21:3683–3695PubMedGoogle Scholar
  144. 144.
    Center for Drug Evaluation and Research, FDA (2003) Guidance for industry: pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. Accessed on Feb 13, 2007 at URL: http://www.fda.gov/cder/guidance/
  145. 145.
    Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 348:529–537PubMedGoogle Scholar
  146. 146.
    Llovet JM, Bruix J (2003) Systemic review of randomized trials for unresectable hepatoceldlular carcinoma: chemoembolization improves survival. Hepatology 37:429–442PubMedGoogle Scholar
  147. 147.
    Barbare JC, Bouche O, Bonnetain F et al (2005) Randomized controlled trial of tamoxifen in advanced hepatocellular carcinoma. J Clin Oncol 23:4338–4346PubMedGoogle Scholar
  148. 148.
    Becker G, Allgaier HP, Olschewski M et al (2007) Long-acting octreotide versus placebo for treatment of advanced HCC: a randomized controlled double-blind study. Hepatology 45:9–15PubMedGoogle Scholar
  149. 149.
    Yuen MF, Poon RT, Lai CL et al (2002) A randomized placebo-controlled study of long-acting octreotide for the treatment of advanced hepatocellular carcinoma. Hepatology 36:687–691PubMedGoogle Scholar
  150. 150.
    Chow PK, Tai BC, Tan CK et al (2002) High-dose tamoxifen in the treatment of inoperable hepatocellular carcinoma: a multicenter randomized controlled trial. Hepatology 36:1221–1226PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ying Chun Shen
    • 1
    • 2
    • 4
  • Chiun Hsu
    • 1
    • 3
    • 4
  • Ann Lii Cheng
    • 1
    • 3
    • 4
  1. 1.Department of OncologyNational Taiwan University HospitalTaipeiTaiwan, R.O.C.
  2. 2.Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan, R.O.C.
  3. 3.Internal MedicineNational Taiwan University HospitalTaipeiTaiwan, R.O.C.
  4. 4.National Center of Excellence for Clinical Trial and ResearchNational Taiwan University HospitalTaipeiTaiwan, R.O.C.

Personalised recommendations