Targeted Oncology

, Volume 1, Issue 4, pp 197–214 | Cite as

Apoptosis: mechanisms and implications for cancer therapeutics

  • Monica M. Mita
  • Alain C. Mita
  • Anthony W. Tolcher
Review

Abstract

Apoptosis, or programmed cell death, is essential for many physiological and pathological processes. Apoptosis results from an orderly activation of several cysteine proteases called caspases, which can be classically triggered by two upstream pathways: the intrinsic and extrinsic pathways. Deregulation of apoptosis is essential for tumor growth and a hallmark of cancer cells. In the recent years, many key elements of the apoptotic process have been identified and have become strategic targets for anticancer therapy. The novel approaches that target the apoptotic pathway may have either a direct proapoptotic effect or alternatively may sensitize cancer cells to other cytotoxics. This review describes the major elements of the apoptotic process, with a special focus of the tight interactions between the extrinsic and intrinsic pathways, and summarizes some of the most promising implications for cancer therapeutics.

Keywords

Apoptosis Caspases Intrinsic pathway Extrinsic pathway TRAIL Bcl-2 IAPs Survivin 

References

  1. 1.
    Kerr JF, Wylie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239PubMedGoogle Scholar
  2. 2.
    Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12(11):1551–1570PubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedGoogle Scholar
  4. 4.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326PubMedGoogle Scholar
  5. 5.
    Kelekar A, Thompson CB (1998) Bcl-2 family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8(8):324–330PubMedGoogle Scholar
  6. 6.
    Reed JC (1998) Bcl-2 family proteins. Oncogene 17(25):3225–3236PubMedGoogle Scholar
  7. 7.
    Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM (1996) Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379(6565):554–556PubMedGoogle Scholar
  8. 8.
    Chittenden T, Flemington C, Houghton AB et al (1995) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14(22):5589–5596PubMedGoogle Scholar
  9. 9.
    Conradt B, Horvitz HR (1998) The C elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93(4):519–529PubMedGoogle Scholar
  10. 10.
    Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299):334–336PubMedGoogle Scholar
  11. 11.
    Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ (1997) Bok is a proapoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective antiapoptotic Bcl-2 family members. Proc Natl Acad Sci U S A 94(23):12401–12406PubMedGoogle Scholar
  12. 12.
    Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535PubMedGoogle Scholar
  13. 13.
    Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403PubMedGoogle Scholar
  14. 14.
    Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53PubMedGoogle Scholar
  15. 15.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42PubMedGoogle Scholar
  16. 16.
    Sanna MG, da Silva Correia J, Ducrey O et al (2002) IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 22(6):1754–1766PubMedGoogle Scholar
  17. 17.
    Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410PubMedGoogle Scholar
  18. 18.
    Deveraux QL, Stennicke HR, Salvesen GS, Reed JC (1999) Endogenous inhibitors of caspases. J Clin Immunol 19(6):388–398PubMedGoogle Scholar
  19. 19.
    Van Antwerp DJ, Martin SJ, Verma IM, Green DR (1998) Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol 8(3):107–111PubMedGoogle Scholar
  20. 20.
    Adams JM, Cory S (2001) Life or death decisions by the Bcl-2 protein family. Trends Biochem Sci 26(1):61–66PubMedGoogle Scholar
  21. 21.
    Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151(3):483–49420PubMedGoogle Scholar
  22. 22.
    Krammer PH (1999) CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol 71:163–210PubMedGoogle Scholar
  23. 23.
    Pitti Rm, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690PubMedGoogle Scholar
  24. 24.
    Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682PubMedGoogle Scholar
  25. 25.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308PubMedGoogle Scholar
  26. 26.
    Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signaling by death receptors. Eur J Biochem 254(3):439–459PubMedGoogle Scholar
  27. 27.
    Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanism of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20(17):2122–2133PubMedGoogle Scholar
  28. 28.
    Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation the absence of caspase-8. J Biol Chem 276(49):46639–46646PubMedGoogle Scholar
  29. 29.
    Bodmer JL, Holler N, Reynard S et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2(4):241–243PubMedGoogle Scholar
  30. 30.
    Kuang AA, Diehl GE, Zhang J, Winoto A (2000) FADD is required for DR4- and DR5-mediated apoptosis: lack of TRAIL-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 275(33):25065–25068PubMedGoogle Scholar
  31. 31.
    Attardi LD, Jacks T (1999) The role of p53 in tumor suppression: lessons from mouse models. Cell Mol Life Sci 55(1):48–63PubMedGoogle Scholar
  32. 32.
    Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13(3):332–337PubMedGoogle Scholar
  33. 33.
    Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17(9):2941–2953PubMedGoogle Scholar
  34. 34.
    Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911PubMedGoogle Scholar
  35. 35.
    Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409(6817):207–211PubMedGoogle Scholar
  36. 36.
    Shayesteh L, Lu Y, Kuo WL et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102PubMedGoogle Scholar
  37. 37.
    Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100(4):387–390PubMedGoogle Scholar
  38. 38.
    Datta SR, Brunet A, Greenberg ME. (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927PubMedGoogle Scholar
  39. 39.
    Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13(3):239–252PubMedGoogle Scholar
  40. 40.
    Green DR, Beere HM (2001) Apoptosis. Mostly dead. Nature 412(6843):133–135PubMedGoogle Scholar
  41. 41.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310PubMedGoogle Scholar
  42. 42.
    Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microosatellite mutator phenotype. Science 272(5302):967–969Google Scholar
  43. 43.
    Kondo S, Shinomura Y, Miyazaki Y et al (2000) Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 60(16):4328–4330PubMedGoogle Scholar
  44. 44.
    Dolcet X, Llobet D, Pallares J, Matias- Guiu X (2005) NF-κB in development and progression of human cancer. Virchows Arch 446(5):475–482PubMedGoogle Scholar
  45. 45.
    Feinman R, Siegel DS, Berenson J (2004) Regulation of NF-κB in multiple myeloma: therapeutic implications. Clin Adv Hematol Oncol 2(3):162–166PubMedGoogle Scholar
  46. 46.
    Kim HS, Lee JW, Soung YH et al (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125(3):708–715PubMedGoogle Scholar
  47. 47.
    Hosomi Y, Gemma A, Hosoya Y et al (2003) Somatic mutation of the caspase-5 gene in human lung cancer. Int J Mol Med 12(4):443–446PubMedGoogle Scholar
  48. 48.
    Soung YH, Lee JW, Kim HS, et al (2003) Inactivating mutations of caspase-7 gene in human cancers. Oncogene 22(39):8048–8052PubMedGoogle Scholar
  49. 49.
    Soung YH, Lee JW, Kim SY et al (2004) Somatic mutations of CASP 3 gene in human cancers. Hum Genet 115(2):112–115PubMedGoogle Scholar
  50. 50.
    Soung YH, Lee JW, Kim SY et al (2005) Caspase-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65(3):815–821PubMedGoogle Scholar
  51. 51.
    Soung YH, Lee JW, Kim SY et al (2006) Mutational analysis of proapoptotic caspase-9 gene in common human carcinomas. APMIS 114(4):292–297PubMedGoogle Scholar
  52. 52.
    Philchenkov A, Zavelevich M, Kroczak TJ, Los M (2004) Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol 26(2):82–97PubMedGoogle Scholar
  53. 53.
    Koenig U, Sommergruber W, Lippens S (2005) Aberrant expression of caspase 14 in epithelial tumors. Biochem Biophys Res Commun 335(2):309–313PubMedGoogle Scholar
  54. 54.
    Podgorski I, Sloane BF (2006) Loss of caspase-8 in tumor cells: mechanism to overcome integrin-mediated death? Mol Interv 6(3):132–136PubMedGoogle Scholar
  55. 55.
    Rogers PM, Beale PJ, Al-Moundhri M et al (2002) Overexpression of BCL-XL in a human ovarian carcinoma line: paradoxic effects on chemosensitivity in vitro versus in vivo. Int J Cancer 97(6):858–863PubMedGoogle Scholar
  56. 56.
    Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279(34):35829–35839PubMedGoogle Scholar
  57. 57.
    Ashkenazi A (2002). Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nat Rev Cancer 2(6):420–430PubMedGoogle Scholar
  58. 58.
    Muschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78(6):312–325PubMedGoogle Scholar
  59. 59.
    Muschen M, Beckmann MW (2000) CD95 ligand expression as a criterion of malignant transformation in breast cancer. J Pathol 191(4):468–470PubMedGoogle Scholar
  60. 60.
    Shin MS, Kim HS, Lee SH et al (2001) Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL -R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61(13):4942–4946PubMedGoogle Scholar
  61. 61.
    Teitz T, Wei T, Valentine MB et al (2000) Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6(5):529–535PubMedGoogle Scholar
  62. 62.
    Tepper CG, Seldin MF (1999) Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein–Barr virus tumorigenesis in Burkitt’s lymphoma. Blood 94(5):1727–1737PubMedGoogle Scholar
  63. 63.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501PubMedGoogle Scholar
  64. 64.
    Fischer B, Coelho D, Dufour P et al (2003) Caspase 8-mediated cleavage of the pro-apoptotic BCL-2 family member BID in p530dependent apoptosis. Biochem Biophys Res Commun 306(2):516–522PubMedGoogle Scholar
  65. 65.
    Wagner KW, Engels IH, Deveraux QL (2004) Caspase 2 can function upstream of BID cleavage in the TRAIL apoptosis pathway. J Biol Chem 279(33):35047–35052PubMedGoogle Scholar
  66. 66.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent-mechanisms. Science 286(5443):1309–1310Google Scholar
  67. 67.
    Ray S, Bucur O, Almasan A (2005) Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 10(6):1411–1418PubMedGoogle Scholar
  68. 68.
    Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26(1):61–66PubMedGoogle Scholar
  69. 69.
    Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16(1):33–45PubMedGoogle Scholar
  70. 70.
    Kandasamy K, Srinivasula SM, Alnemri ES et al (2003) Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res 63(7):1712–1721PubMedGoogle Scholar
  71. 71.
    Burns TF, El-Deiry WS (2001) Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 276(41):37879–37886PubMedGoogle Scholar
  72. 72.
    Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256(1):42–49PubMedGoogle Scholar
  73. 73.
    Houghton JA (1999) Apoptosis and drug response. Curr Opin Oncol 11(6):475–481PubMedGoogle Scholar
  74. 74.
    Huang Y, He Q, Hilmann MJ, Rong R, Sheikh MS (2001) Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res 61(18):6918–6924PubMedGoogle Scholar
  75. 75.
    Ravi R, Bedi A (2002) Requirements of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers; synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res 62(6):1583–1587PubMedGoogle Scholar
  76. 76.
    Wang S, El-Diery WS (2004) The p53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat Res 119:175–187PubMedGoogle Scholar
  77. 77.
    Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H (2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 7(6):680–686PubMedGoogle Scholar
  78. 78.
    Hymowitz SG, O’Connell MP, Ultsch MH et al (2000) A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39(4):633–640PubMedGoogle Scholar
  79. 79.
    Hymowitz SG, Christinger HW, Fuh G et al (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4(4):563–571PubMedGoogle Scholar
  80. 80.
    Bodmer JL, Meier P, Tschopp J, Schneider P (2000) Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 275(27):20632–20637PubMedGoogle Scholar
  81. 81.
    Bodmer JL, Holler N, Reynaud S et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–243PubMedGoogle Scholar
  82. 82.
    Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168(3):1356–1361PubMedGoogle Scholar
  83. 83.
    Takeda K, Smyth MJ, Cretney E et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195(2):161–169PubMedGoogle Scholar
  84. 84.
    Secchiero P, Gonelli A, Carnevale E et al (2003) TRIAL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107(17):2250–2256PubMedGoogle Scholar
  85. 85.
    Secchiero P, Gonelli A, Carnevale E, Corallini F, Rizzardi C, Zacchigna S, Melato M, Zauli G (2004) Evidence for a proangiogenic activity of TNF-related apoptosis-inducing ligand. Neoplasia 6(4):364–373PubMedGoogle Scholar
  86. 86.
    Held J, Schulze-Osthoff K (2001) Potential and caveats of TRAIL in cancer therapy. Drug Resist Updat 4(4):243–252PubMedGoogle Scholar
  87. 87.
    Fricker J (1999) On the TRAIL to a new cancer therapy. Mol Med Today 5(9):374PubMedGoogle Scholar
  88. 88.
    Nagane M, Huang HJ, Cavenee WK (2001) The potential of TRAIL for cancer chemotherapy. Apoptosis 6(3):191–197PubMedGoogle Scholar
  89. 89.
    Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633PubMedGoogle Scholar
  90. 90.
    Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersy P (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59(11):2747–2753PubMedGoogle Scholar
  91. 91.
    Gura T (1997) How TRAIL kills cancer cells, but not normal cells. Science 277(5327):768PubMedGoogle Scholar
  92. 92.
    Nesterov A, Nikrad M, Johnson T, Kraft AS (2004) Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpha-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 64(11):3922–3927PubMedGoogle Scholar
  93. 93.
    Drosopoulos KG, Roberts ML, Cermak L et al (2005) Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem 280(24):22856–22867PubMedGoogle Scholar
  94. 94.
    Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M (1998) APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett 427:124–128PubMedGoogle Scholar
  95. 95.
    Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59:734–741PubMedGoogle Scholar
  96. 96.
    Mizutani Y, Nakao M, Ogawa O, Yoshida O, Bonavida B, Miki T (2001) Enhanced sensitivity of bladder cancer cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis by cispaltin and carboplatin. J Urol 165:263–270PubMedGoogle Scholar
  97. 97.
    Mitsiades N, Poulaki V, Mitsiades C, Tsokos M (2001) Ewing’s sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosis inducing ligand and express death receptor 4 and death receptor 5. Cancer Res 61:2704–2712PubMedGoogle Scholar
  98. 98.
    Yu R, Mandlekar S, Ruben S, Ni J, Kong AN (2000) Tumor necrosis factor-related apoptosis inducing ligand-mediated apoptosis in androgen-independent prostate cancer cells. Cancer Res 60:2384–2389PubMedGoogle Scholar
  99. 99.
    Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13:1817–1824PubMedGoogle Scholar
  100. 100.
    Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162PubMedGoogle Scholar
  101. 101.
    Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163PubMedGoogle Scholar
  102. 102.
    Gliniak B, Le T (1999) Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59(24):6153–6158PubMedGoogle Scholar
  103. 103.
    Jo M, Kim TH, Seol DW et al (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6(5):564–567PubMedGoogle Scholar
  104. 104.
    Lawrence D, Shahrokh Z, Marsters S et al (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7(4):383–385PubMedGoogle Scholar
  105. 105.
    Qin J, Chaturvedi V, Bonish B, Nickoloff BJ (2001) Avoiding premature apoptosis of normal epidermal cells. Nat Med 7(4):385–386PubMedGoogle Scholar
  106. 106.
    Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL (2000) Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 165(5):2886–2894PubMedGoogle Scholar
  107. 107.
    Kagawa S, He C, Gu J et al (2001) Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 61(8):3330–3338PubMedGoogle Scholar
  108. 108.
    Griffith TS, Broghammer EL (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 4(3):257–266PubMedGoogle Scholar
  109. 109.
    Huang X, Lin T, Gu J et al (2002) Combined TRAIL and Bax gene therapy prolonged survival in mice with ovarian cancer xenograft. Gene Ther 9(20):1379–1386PubMedGoogle Scholar
  110. 110.
    McCormick F (2001) Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 1(2):130–141PubMedGoogle Scholar
  111. 111.
    Armeanu S, Lauer UM, Smirnow I et al (2003) Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res 63(10):2369–2372PubMedGoogle Scholar
  112. 112.
    Salcedo TW, Alderson RF, Basu S et al (2002) TRM-1, a fully human TRAIL-R1 agonistic monoclonal antibody, displays in vitro and in vivo antitumor activity. Annu Meet Am Assoc Cancer Res Proc 43:856 (A208)Google Scholar
  113. 113.
    Tolcher AW, Mita M, Patnaik A et al (2004) A phase I, and pharmacokinetic study of HGS-ETR1(TRM1), a human monoclonal agonist-antibody to TRAIL R1, in patients with advanced solid tumors. Proceedings Am Soc Clin Oncol: A3060Google Scholar
  114. 114.
    Mita M, Tolcher AW, Patnaik A et al (2005) A phase I, pharmacokinetic (PK) study of HGS-ETR1, an agonist monoclonal antibody to TRAIL-R1, in patients with advanced solid tumors. Proceedings of the American Association for Cancer Research Annual Meeting 2005, A544Google Scholar
  115. 115.
    Hotte SJ, Oza AM, Le LH et al (2004) HGS_ETR1, a fully human monoclonal antibody to the tumor necrosis factor-related apoptosis-inducing ligand death receptor 1 (TRAIL-R1) in patients with advanced solid cancer: results of a phase I trial. Proceedings AACR-NCI-EORTC Symposium on Molecular Targets and Cancer Therapeutics, A208Google Scholar
  116. 116.
    Younes A, Vose J, Zelenetz AD et al (2005) Results of a phase II trial of HGS-ETR 1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/refractory non-Hodgkin’s Lymphoma (NHL). Proceedings American Society of Hematology Annual Meeting, A489Google Scholar
  117. 117.
    Patnaik A, Wakelee H, Mita M et al (2006) HGS-ETR2—a fully human monoclonal antibody to TRAIL-R2: Results of a phase I trial in patients with advanced solid tumors. Proceedings Am Soc Clin Oncol 42nd Annual Meeting, A3012Google Scholar
  118. 118.
    Herbst RS, Mendelson DS, Ebbinghaus S et al (2006) A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer. Proceedings Am Soc Clin Oncol 42nd Annual Meeting, A3013Google Scholar
  119. 119.
    Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12(3):228–237PubMedGoogle Scholar
  120. 120.
    Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer 5(1):54PubMedGoogle Scholar
  121. 121.
    Bruserud O (2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90(5):579PubMedGoogle Scholar
  122. 122.
    Riccioni R, Pasquini L, Mariani G et al (2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90(5):612–624PubMedGoogle Scholar
  123. 123.
    Thomas LR, Johnson RL, Reed JC, Thorburn A (2004) The C-terminal tails of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas receptors have opposing functions in Fas-associated death domain (FADD) recruitment and can regulate agonist-specific mechanisms of receptor activation. J Biol Chem 279(50):52479–52486PubMedGoogle Scholar
  124. 124.
    Scaffidi C, Fulda S, Srinivasan A, et al (1998) Two CD95(APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687PubMedGoogle Scholar
  125. 125.
    Ozoren N, Kim K, Burns TF, Dicker DT, Moscioni AD, El-Diery WS (2000) The caspase-9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 60(22):6259–6265PubMedGoogle Scholar
  126. 126.
    Burns TF, El-Diery WS (2001) Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 276(41):37879–37886PubMedGoogle Scholar
  127. 127.
    Ozoren N, El-Deiry WS (2002) Defining characteristics of Type I and II apoptotic cells in response to TRAIL. Neoplasia 4(6):551–557PubMedGoogle Scholar
  128. 128.
    Eggert A, Grotzer MA, Zuzak TJ et al (2001) Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61(4):1314–1319PubMedGoogle Scholar
  129. 129.
    Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840PubMedGoogle Scholar
  130. 130.
    Bin L, Li X, Xu LG, Shu HB (2002) The short splice form of Casper/c-FLIP is a major cellular inhibitor of TRAIL-induced apoptosis. FEBS Lett 277:25020–25025Google Scholar
  131. 131.
    Weldon CB, Parker AP, Patten D et al (2004) Sensitization of apoptotically-resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling. Int J Oncol 24(6):1473–1480PubMedGoogle Scholar
  132. 132.
    Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS (2001) Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276:10767–10774PubMedGoogle Scholar
  133. 133.
    Chen X, Thakkar H, Tyan F et al (2001) Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20:6073–6083PubMedGoogle Scholar
  134. 134.
    Thakkar H, Chen X, Tyan F et al (2001) Pro-survival function of Akt/protein kinase B in prostate cancer cells: relationship with TRAIL resistance. J Biol Chem 276:38361–38369PubMedGoogle Scholar
  135. 135.
    Poulaki V, Mitsiades CS, Kotoula V et al (2002) Regulation of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in thyroid carcinoma cells. Am J Pathol 161:643–654PubMedGoogle Scholar
  136. 136.
    Mitsiades CS, Mitsiades N, Poulaki V et al (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21:5673–5683PubMedGoogle Scholar
  137. 137.
    Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM (2002) Regulation of TRAIL expression by the PI3-KINASE/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 277(39):36602–36610PubMedGoogle Scholar
  138. 138.
    Kandasamy K, Srivastava RK (2002) Role of the phospahtidylinositol 3’-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62:4929–4937PubMedGoogle Scholar
  139. 139.
    Taniai M, Grambihler A, Higuchi H et al (2004) Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64(10):3517–3524PubMedGoogle Scholar
  140. 140.
    LeBlanc H, Lawrence D, Varfolomeev E et al (2002) Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8(3):274–281PubMedGoogle Scholar
  141. 141.
    Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 60:847–853PubMedGoogle Scholar
  142. 142.
    Guan B, Yue P, Clayman GL, Sun SY (2001) Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 188:98–105PubMedGoogle Scholar
  143. 143.
    Ambrosini G, Adida C, Altieri DC (1997) A novel antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–990PubMedGoogle Scholar
  144. 144.
    Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC (1998) Developmentally regulated expression of the novel cancer antiapoptosis gene survivin in human and mouse differentiation. Am J Pathol 152:43–49PubMedGoogle Scholar
  145. 145.
    Fukuda S, Pelus LM (2001) Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors: implications of survivin expression in normal hematopoiesis. Blood 98:2091–2100PubMedGoogle Scholar
  146. 146.
    Gianani R, Jarboe E, Orlicky D et al (2001) Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol 32(1):119–125PubMedGoogle Scholar
  147. 147.
    Zhang T, Otevrel T, Gao Z et al (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61(24):8664–8667PubMedGoogle Scholar
  148. 148.
    Monzo M, Rosell R, Felip E et al (1999) A novel antiapoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small cell lung cancers. J Clin Oncol 17:2100–2104PubMedGoogle Scholar
  149. 149.
    Tanaka K, Iwamoto S, Gon G et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6:127–134PubMedGoogle Scholar
  150. 150.
    Satoh K, Kanedo K, Hirota M et al (2001) Tumor necrosis factor-related apoptosis-inducing ligand and its receptor expression and the pathway of apoptosis in human pancreatic cancer. Pancreas 23:251–258PubMedGoogle Scholar
  151. 151.
    Kawasaki H, Altieri DC, Lu CD et al (1998) Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res 58:5071–5074PubMedGoogle Scholar
  152. 152.
    Chakravarti A, Noll E, Black PM et al (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20:1063–1068PubMedGoogle Scholar
  153. 153.
    Grossman D, McNiff JM, Li F et al (1999) Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol114:1076–1081 (erratum appears in J Invest Dermatol 2000, 20:1063–1068)Google Scholar
  154. 154.
    Kappler M, Bache M, Bartel F et al (2004) Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival in human sarcoma cell lines independently of p53. Cancer Gene Ther 11:186–193PubMedGoogle Scholar
  155. 155.
    Islam A, Kageyama H, Takada N et al (2000) High expression of survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19:617–623PubMedGoogle Scholar
  156. 156.
    Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351:882–883PubMedGoogle Scholar
  157. 157.
    Zafaroni N, Daidone MG (2002) Survivin expression and resistance to anticancer treatments: perspectives for new therapeutic interventions. Drug Resist Updat 5(2):65–72Google Scholar
  158. 158.
    Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Investig 114:1117–1127PubMedGoogle Scholar
  159. 159.
    Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22:8581–8589PubMedGoogle Scholar
  160. 160.
    Li F, Ambrosini G, Chu EY et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584PubMedGoogle Scholar
  161. 161.
    O’Connor DS, Wall NR, Porter AC, Altieri DC (2002) A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2(1):43–54PubMedGoogle Scholar
  162. 162.
    Giodini A, Kallio MJ, Wall NR et al (2002) Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 62(9):2462–2467PubMedGoogle Scholar
  163. 163.
    Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad USA 99(7):4349–4354Google Scholar
  164. 164.
    Ambrosini G, Adida C, Sirugo G, Altieri DC (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273(18):11177–11182PubMedGoogle Scholar
  165. 165.
    Hattori M, Sakamoto H, Satoh K et al (2001) DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett 169:155–164PubMedGoogle Scholar
  166. 166.
    Li F, Altieri DC (1999) Transcriptional analysis of human survivin gene expression. Biochem J 2:305–311Google Scholar
  167. 167.
    Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M (2002) Transcriptional repression of the antiapoptotic survivin gene by wild type p53. J Biol Chem 277(5):3247–3257PubMedGoogle Scholar
  168. 168.
    Mirza A, McGuirk M, Hockenberry TN et al (2002) Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21(17):2613–2622PubMedGoogle Scholar
  169. 169.
    Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW (2002) DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 303(1):124–131PubMedGoogle Scholar
  170. 170.
    Tran J, Rak J, Sheehan C et al (1999) Marked induction of the IAP family antiapoptitic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264(3):781–788PubMedGoogle Scholar
  171. 171.
    Harfouche R, Hassessian HM, Guo Y et al (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64:135–147PubMedGoogle Scholar
  172. 172.
    Mesri M, Morales-Ruiz M, Ackermann EJ et al (2001) Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol 158:1757–1765PubMedGoogle Scholar
  173. 173.
    Reed JC (2001) The survivin saga goes in vivo. J Clin Invest 108(7):965–969PubMedCrossRefGoogle Scholar
  174. 174.
    Schlette EJ, Medeiros LJ, Goy A, Lai R, Rassidakis GZ (2004) Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol 22(9):1682–1688PubMedGoogle Scholar
  175. 175.
    Shariat SF, Lotan Y, Saboorian H et al (2004) Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100(4):751–757PubMedGoogle Scholar
  176. 176.
    Andersen MH, Thor SP (2002) Survivin—a universal tumor antigen. Histol Histopathol 17:669–675PubMedGoogle Scholar
  177. 177.
    Ling X, Li F (2004) Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques 36:450–454PubMedGoogle Scholar
  178. 178.
    Tolcher AW, Antonia S, Lewis LD et al (2006) A phase I study of YM155, a novel survivin suppressant, administered by 168 hours continuous infusion to patients with advanced solid tumors. Proc Am Soc Clin Oncol 42nd Annual Meeting, A3014Google Scholar
  179. 179.
    Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64(20):7183–7190PubMedGoogle Scholar
  180. 180.
    Shi Y (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13(8):1979–1987PubMedGoogle Scholar
  181. 181.
    Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvessen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18(19):5242–5251PubMedGoogle Scholar
  182. 182.
    Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13(2):179–188PubMedGoogle Scholar
  183. 183.
    Sanna MG, Ducket CS, Richter BW, Thompson CB, Ulevitch RJ (1998) Selective activation of JNK1 is necessary for the antiapoptotic activity of hILP. Proc Natl Acad Sci U S A 95(11) 6015–6020PubMedGoogle Scholar
  184. 184.
    Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R (2000) Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 275(29):22064–22068PubMedGoogle Scholar
  185. 185.
    Tong QS, Zheng LD, Wang L et al (2005) Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther 12(5):509–514PubMedGoogle Scholar
  186. 186.
    Sasaki H, Sheng Y, Kotsuji F, Tsang BK (2000) Downregulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60(20):5659–5666PubMedGoogle Scholar
  187. 187.
    McManus DC, Lefebvre CA, Cherton-Horvat G et al (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117PubMedGoogle Scholar
  188. 188.
    Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization of XIAP-deficient mice. Mol Cell Biol 21(10):3604–3608PubMedGoogle Scholar
  189. 189.
    Tamm I, Richter S, Oltersdorf D et al (2004) High expression levels of X-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res 10(11):3737–3744PubMedGoogle Scholar
  190. 190.
    Ferreira CG, van der Valk P, Span S, Ludwig I, Smit EF, Kruyt FA et al (2001) Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin Cancer Res 7(8):2468–2474PubMedGoogle Scholar
  191. 191.
    Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci U S A 74:4370–4374PubMedGoogle Scholar
  192. 192.
    Zamecnik PC, Goodchild J, Taguchi Y et al (1986) Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc Natl Acad Sci U S A 83:4143–4146PubMedGoogle Scholar
  193. 193.
    Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75:285–288PubMedGoogle Scholar
  194. 194.
    Crooke ST (1998) Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Acid Drug Dev 8:133–134PubMedGoogle Scholar
  195. 195.
    Ranson M, Dive C, Ward T et al (2006) A phase I trial of AEG35156 (XIAP antisense) administered as a continuous intravenous infusion in patients with advanced tumors. Proceedings Am Soc Clin Oncol Annual Meeting, A3059Google Scholar
  196. 196.
    Oost TK, Sun C, Armstrong RC, Al-Assaad AS et al (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47(18):4417–4426PubMedGoogle Scholar
  197. 197.
    Sun H, Nickolovska-Coleska Z, Chen J et al (2005) Structure-based design, synthesis and biochemical testing of novel and potent Smac peptide-mimetics. Bioorg Med Chem Lett 15(3):793–797PubMedGoogle Scholar
  198. 198.
    Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL-and TNFalpha-mediated cell death. Science 305(5689):1471–1474PubMedGoogle Scholar
  199. 199.
    Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL (2003) Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 intercation. Chem Biol 10(8):759–767PubMedGoogle Scholar
  200. 200.
    Schimmer AD, Welsh K, Pinilla C et al (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5(1):25–35PubMedGoogle Scholar
  201. 201.
    Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848PubMedGoogle Scholar
  202. 202.
    Tsujimoto Y, Finger LR, Yunis J et al (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099PubMedGoogle Scholar
  203. 203.
    Gascoyne RD, Adomat SA, Krajewsky S et al (1997) Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood 90:244–251PubMedGoogle Scholar
  204. 204.
    McDonnell TJ, Troncoso P, Brisbay SM et al (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52:6940–6944PubMedGoogle Scholar
  205. 205.
    Krajewska M, Krajewski S, Epstein JI et al (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576PubMedGoogle Scholar
  206. 206.
    Krajewski S, Thor AD, Edgerton SM, et al (1997) Analysis of Bax and Bcl-2 expression in p53-immunopositive breast cancers. Clin Cancer Res 3:199–208PubMedGoogle Scholar
  207. 207.
    Cox G, Louise Jones J, Andi A et al (2001) Bcl-2 is an independent prognostic factor and adds to a biological model for predicting outcome in operable non-small cell lung cancer. Lung Cancer 34:417–426PubMedGoogle Scholar
  208. 208.
    Apakama I, Robinson MC, Walter NM et al (1996) Bcl-2 overexpression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. Br J Cancer 74:1258–1262PubMedGoogle Scholar
  209. 209.
    Miyashita T, Reed JC (1992) Bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticiods and multiple chemotherapeutic drugs. Cancer Res 52:5407–5411PubMedGoogle Scholar
  210. 210.
    Fisher TC, Milner AE, Gregory CD et al (1993) Bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res 53:3321–3326PubMedGoogle Scholar
  211. 211.
    Ohmori T, Podack ER, Nishio K et al (1993) Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-11, ADM) is inhibited by Bcl-2. Biochem Biophys Res Commun 53:3321–3326Google Scholar
  212. 212.
    Walton MI, Whysong D, O’Connor PM et al (1993) Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 53:1853–1861PubMedGoogle Scholar
  213. 213.
    Raffo AJ, Perlman H, Chen MW et al (1995) Overexpression of Bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445PubMedGoogle Scholar
  214. 214.
    Kyprianou N, King ED, Bradbury D et al (1997) Bcl-2 overexpression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 70:341–348PubMedGoogle Scholar
  215. 215.
    Kaufmann SH, Vaux DL (2003) Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene 22:7414–7430PubMedGoogle Scholar
  216. 216.
    Dorai T, Goluboff ET, Olsson CA et al (1997) Development of a hammerhead ribozyme against BCL-2. II. Ribozyme treatment sensitizes hormone-resistant prostate cancer cells to apoptotic agents. Anticancer Res 17:3307–3312PubMedGoogle Scholar
  217. 217.
    Campos L, Sabido O, Rouault JP et al (1994) Effects of Bcl-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 84:595–600PubMedGoogle Scholar
  218. 218.
    Gleave M, Tolcher A, Miyake H et al (1999) Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligonucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res 5:2891–2898PubMedGoogle Scholar
  219. 219.
    Janssen B, Schlagbauer-Wadl H, Brown BD et al (1998) Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 4:232–234Google Scholar
  220. 220.
    Klasa RJ, Bally MB, Ng R et al (2000) Eradication of human non-Hodgkin’s lymphoma in SCID mice by Bcl-2 antisense oligonucleotides combined with low-dose cyclophospahmide. Clin Cancer Res 6:2492–2500PubMedGoogle Scholar
  221. 221.
    Affar EB, Germani M, Winstall E et al (2001) Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem 276:2935–2942PubMedGoogle Scholar
  222. 222.
    Miayake H, Tolcher A, Gleave ME (2000) Chemosensitization and delayed androgen-independent recurrence of prostate canecr with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst 92:34–41PubMedGoogle Scholar
  223. 223.
    Loomis R, Carbone R, Reiss M, Lacy J (2003) Bcl-2 antisense (g3139, Genasense) enhances the in vitro and in vivo response of Epstein–Barr virus-associated lymphoproliferative disease to rituximab. Clin Cancer Res 9(5):1931–1939PubMedGoogle Scholar
  224. 224.
    Webb A, Cunningham D, Cotter F et al (1997) Bcl-2 antisense therapy in patients with non-Hodgkin’s lymphoma. Lancet 349:1137–1141PubMedGoogle Scholar
  225. 225.
    Waters JS, Webb A, Cunningham D et al (2000) Phase I clinical and pharmacokinetic study of Bcl-2 antisense oligonucloetide therapy in patients with non-Hodgkin lymphoma. J Clin Oncol 18:1812–1823PubMedGoogle Scholar
  226. 226.
    Morris MJ, Tong WP, Cordon-Cardo C et al (2002) Phase I trial pf Bcl-2 antisense oligonucleotide (G3139) administered by continuos intravenous infusion in patients with advanced cancer. Clin Cancer Res 8:679–683PubMedGoogle Scholar
  227. 227.
    O’Brien S, Gilles F, Rai K et al (2001) Bcl-2 antisense (Genasense) as monotherapy for refractory chronic lymphocytic leukemia. Blood 98:772aGoogle Scholar
  228. 228.
    Jansen B, Wacheck V, Heere-Ress E et al (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356(9243):1728–1733PubMedGoogle Scholar
  229. 229.
    Millward Mj, Bedikian AY, Conry RM et al (2004) Randomized multinational phase 3 trial of dacarbazine (DTIC) with or without Bcl-2 antisense (oblimersen sodium) in patients with advanced malignant melanoma. Proc Am Soc Clin Oncol Annual Meeting 23:708 (A7505)Google Scholar
  230. 230.
    James DF, Castro JE, Loria O, Prada CE, Aguillon RA, Kipps TJ (2006) AT-101, a small molecule Bcl-2 antagonist, in treatment naïve CLL patients (pts) with high risk features; preliminary results from an ongoing phase I trial. Proceedings Am Soc Clin Oncol Annual Meeting, A6605Google Scholar
  231. 231.
    Olney HJ, Weng X, Watson M, Beauoarlant P, Soulieres D, Viallet J, Sarfati M (2005) Preclinical evaluation of apoptosis induction by the novel small molecule Bcl-2 inhibitor, GX015-070, in ex-vivo chronic lymphoid leukemia (CLL) cells. Proceedings Am Soc Clin Oncol Annual Meeting, A3149Google Scholar
  232. 232.
    O’Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR (2005) Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytoc leukemia. J Clin Oncol 23(30):7697–7702PubMedGoogle Scholar
  233. 233.
    Mita MM, Ochoa L, Rowinsky EK et al (2006) A phase I, pharmacokinetic and biologic correlative study of oblimersen sodium (Genasense, G3139) and irinotecan in patients with metastatic colorectal cancer. Ann Oncol 17(2):313–321PubMedGoogle Scholar
  234. 234.
    Marcucci G, Byrd JC, Dai G et al (2003) Phase I and pharmacodynamic studies of G3139, a Bcl-2 antisense nucleotide, in combination with chemotherapy in refractory and relapsed acute leukemia. Blood 101(2):425–432PubMedGoogle Scholar
  235. 235.
    Marshall JL, Chen HX, Yang D et al (2004) A phase I trial of Bcl-2 antisense (G3139), and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 15(8):1274–1283PubMedGoogle Scholar
  236. 236.
    Rudin CM, Otterson GA, Mauer AM et al (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemo-refractory small-cell lung cancer. Ann Oncol 13:539–545PubMedGoogle Scholar
  237. 237.
    Lai CJ, Tan W, Benimetskaya L, Miller P, Colombini M, Stein CA (2006) A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. PNAS 103(19):7494–7499PubMedGoogle Scholar
  238. 238.
    Lai CJ, Benimetskaya L, Khvorova A et al (2005) Phosphorotioate oligodeoxynucleotides and G3139 induce apoptosis in 518A2 melanoma cells. Mol Cancer Ther 4(2):305–315PubMedGoogle Scholar
  239. 239.
    Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature 435:677–681PubMedGoogle Scholar
  240. 240.
    McGreivy JS, Marshall J, Cheson BD et al (2005) Initial results from ongoing phase I trials of a novel pan bcl-2 family small molecule inhibitor. J Clin Oncol, ASCO Annual Meeting Proceedings 23(16S) (June 1 Supplement):3180Google Scholar
  241. 241.
    Castro JE, Prada CE, Kitaka S et al (2005) GX15-070MS, a synthetic small molecule induces apoptosis in vitro and in vivo in chronic lymphocytic leukemia. J Clin Oncol, ASCO Annual Meeting Proceedings 23(16S) (June 1 Supplement):3167Google Scholar
  242. 242.
    Saleh M, Pitot H, Hartung J, Holmlund J, LoBuglio A, Forero A et al (2005) Phase I trial of AT-101, an orally bioavailable inhibitor of Bcl-2, in patients with advanced malignancies. Proceedings 17th AACR-NCI-EORTC Symposium on Molecular Targets and Cancer TherapeuticsGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Monica M. Mita
    • 1
    • 2
  • Alain C. Mita
    • 1
    • 2
  • Anthony W. Tolcher
    • 1
    • 2
  1. 1.Institute for Drug DevelopmentCancer Therapy and Research CenterSan AntonioUSA
  2. 2.University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations