Journal of Systems Science and Systems Engineering

, Volume 25, Issue 3, pp 326–350 | Cite as

Assessing historical reliability of the agent-based model of the global energy system

  • Anna ShchiptsovaEmail author
  • Jiangjiang Zhao
  • Arnulf Grubler
  • Arkady Kryazhimskiy
  • Tieju Ma


This study looks at the historical reliability of the agent-based model of the global energy system. We present a mathematical framework for the agent-based model calibration and sensitivity analysis based on historical observations. Simulation consistency with the historical record is measured as a distance between two vectors of data points and inference on parameter values is done from the probability distribution of this stochastic estimate. Proposed methodology is applied to the model of the global energy system. Some model properties and limitations followed from calibration results are discussed.


Agent-based modeling calibration energy system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Antonini, G., Bierlaire, M. & Weber M. (2006). Discrete choice models of pedestrian walking behavior. Transportation Research, Part B: Methodological, 40 (8): 667–687.CrossRefGoogle Scholar
  2. [2]
    Axelrod, R. (1997). The dissemination of culture a model with local convergence and global polarization. Journal of Conflict Resolution, 41 (2): 203–226.CrossRefGoogle Scholar
  3. [3]
    Ayres, R. & Kneese, A. (1969). Production, consumption, and externalities. The American Economic Review, 59 (3): 282–297.Google Scholar
  4. [4]
    Balci, O. (1994). Validation, verification and testing techniques throughtout the life cycle of a simulation study. In: Tew, J., Manivannan, S., Sadowski, D. & Seila, A. (eds.), Winter Simulation Conference: 215-220, Orlando, December 11-14, 1994, IEEE, Piscatway, NJ.Google Scholar
  5. [5]
    Barreteau, O. (2003). Our companion modelling approach. Journal of Artifical Societies and Social Simulation, 6 (1). Available via Cited October 29, 2015.Google Scholar
  6. [6]
    Beyrer, C., Baral, S., van Griensven, F., Goodreau, S., Chariyalertsak, S., Wirtz, A. & Brookmeyer, R. (2012). Global epidemiology of HIV infection in men who have sex with men. Lancet, 380 (9839): 367–377.CrossRefGoogle Scholar
  7. [7]
    Bonabeau, E. (2002). Adaptive agents, intelligence, and emergent human organization: capturing complexity through agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99: 7280–7287.CrossRefGoogle Scholar
  8. [8]
    Bowles, S., Choi, J. & Hopfensitz, A. (2003). The co-evolution of individual behaviors and social institutions. Journal of Theoretical Biology, 223 (2): 135–147.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Bunn, D. & Oliveira, F. (2001). Agent-based simulation - An application to the new electricity trading arrangements of England and Wales. IEEE Transactions on Evolutionary Computation, 5 (5): 493–503.CrossRefGoogle Scholar
  10. [10]
    Choi, J. & Bowles, S. (2007). The coevolution of parochial altruism and war. Science, 318 (5850): 636–640.CrossRefGoogle Scholar
  11. [11]
    Cioppa, T., Lucas, T. & Sanchez, S. (2004). Military applications of agent-based simulations. In: Ingalls R., Rossetti M., Smith J. & Peters B. (eds), Winter Simulation Conference, 1:171–180, Washington, December 5-8, 2004, IEEE.Google Scholar
  12. [12]
    Delre, S., Jager, W. & Janssen, M. (2007). Diffusion dynamics in small-world networks with heterogeneous consumers. Computational and Mathematical Organization Theory, 13 (2): 185–202.CrossRefzbMATHGoogle Scholar
  13. [13]
    De Stercke, S. (2014). Dynamics of Energy Systems: a Useful Perspective. International Institute for Applied Systems Analysis, Laxenburg, Austria, Interim Report IR-14-013.Google Scholar
  14. [14]
    Dia, H. (2002). An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transportation Research, Part C: Emerging Technologies, 10 (5): 331–349.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Fagiolo, G., Moneta, A. & Windrum, P. (2007). A critical guide to empirical validation of agent-based models in economics: methodologies, procedures, and open problems. Computational Economics, 30 (3): 195–226.CrossRefGoogle Scholar
  16. [16]
    Grubler, A. (2012). Energy transitions research: insights and cautionary tales. Energy Policy, 50: 8–16.CrossRefGoogle Scholar
  17. [17]
    Grubler, A. (1991). Diffusion: long-term patterns and discontinuities. Technological Forecasting and Social Change, 39: 159–180.CrossRefGoogle Scholar
  18. [18]
    Halsnaes, K., Shukla, P., Ahuja, D., Akumu, G., Beale, R., Edmonds, J., Gollier, C., Grubler, A. et al. (2007). Framing issues. In: Metz, B., Davidson, O., Bosch, P., Dave, R. & Meyer, L. (eds), Climate Change 2007: Mitigation. Contribution of Working Group III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, pp. 117–167. Cambridge: Cambridge University Press.Google Scholar
  19. [19]
    Isley, S., Lempert, R., Poper, S. & Vardavas, R. (2013). An evolutionary model of industry transformation and the political sustainability of emission control policies. RAND Corporation Technical Report.Google Scholar
  20. [20]
    Kaipio, J. & Somersalo, E. (2005). Statistical and Computational Inverse Problems. Springer, New York.zbMATHGoogle Scholar
  21. [21]
    Kleijnen, J. (1995). Verification and validation of simulation models. European Journal of Operational Research, 82: 145–162.CrossRefzbMATHGoogle Scholar
  22. [22]
    Ma, T. & Grubler, A. (2008). The evolution of technological complexity: an agent-based simulation model of the global energy system. In: Golub, A. & Markandya, A. (eds), Modeling Environment - Improving Technological Innovations under Uncertainty, pp. 205–244., London: Routledge.Google Scholar
  23. [23]
    Ma, T., Grubler, A., Nakicenovic, N. & Arthur, W. (2008). Technologies as agents of change: a simulation model of the evolving complexity of the global energy system. International Institute for Applied Systems Analysis, Laxenburg, Austria, Interim Report IR-08-021.Google Scholar
  24. [24]
    Messner, S. & Strubegger, M. (1994). The energy model MESSAGE III. In: Hake, J. et al. (eds.), Advances in Systems Analysis: Modelling Energy-Related Emissions on a National and Global Scale,. Konferenzen des Forschungszentrums Juelich, Germany.Google Scholar
  25. [25]
    Moss, S. (2008). Alternative approaches to the empirical validation of agent-based models. Journal of Artificial Societies and Social Simulation, 11 (1). Available via Cited October 29, 2015.Google Scholar
  26. [26]
    Norman, T., Preece, A., Chalmers, S., Jennings, N., Luck, M., Dang, V., Nguyen, T., Deora, V., Shao, J., Gray, W. & Fiddian, N. (2004). Agent-based formation of virtual organizations. Knowledge Based Systems, 17 (2): 103–111.CrossRefGoogle Scholar
  27. [27]
    Palmer, R., Arthur, W., Holland, J., LeBaron, B. & Tayler, P. (1994). Artificial economic life: a simple model of a stockmarket. Physica D, 75: 264–274.CrossRefzbMATHGoogle Scholar
  28. [28]
    Riahi, K., Grubler, A. & Nakicenovic, N. (2007). Scenarios of long-term socioeconomic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74 (7): 887–935.CrossRefGoogle Scholar
  29. [29]
    Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D. & Wilson, C. (2012). Energy pathways for sustainable development. In: Global Energy Assessment - Toward a Sustainable Future, pp. 1203–1306. Cambridge, UKand New York, NY,US: Cambridge University Press and International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  30. [30]
    Rukhin, A. (2000). Approximate entropy for testing randomness. Journal of Applied Probabilit, 37: 88–100.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Sargent, R. (2013). Verification and validation of simulation models. Journal of Simulation, 7: 12–24.CrossRefGoogle Scholar
  32. [32]
    Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27 (3): 379–423.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Shi, J., Ren, A. & Chen, C. (2009). Agent-based evacuation model of large public buildings under fire conditions. Automation in Construction, 18 (3): 338–347.CrossRefGoogle Scholar
  34. [34]
    Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia, Pa.CrossRefzbMATHGoogle Scholar
  35. [35]
    Tikhonov, A. & Arsenin, V. (1977). Solution of Ill-posed Problems. Wiley.zbMATHGoogle Scholar
  36. [36]
    Welsh, D. (1988). Codes and Cryptography. Oxford University Press.zbMATHGoogle Scholar

Copyright information

© Systems Engineering Society of China and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anna Shchiptsova
    • 1
    Email author
  • Jiangjiang Zhao
    • 2
  • Arnulf Grubler
    • 1
    • 3
  • Arkady Kryazhimskiy
    • 1
    • 4
  • Tieju Ma
    • 1
    • 2
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.East China University of Science and TechnologyShanghaiChina
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  4. 4.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations