Advertisement

Development of an instrumented thoracoscopic surgical trainer for objective evaluation of esophageal atresia/tracheoesophageal fistula repair

  • Ashton A. MoorheadEmail author
  • David Nair
  • Chris Morison
  • Nicholas J. Cook
  • Spencer W. Beasley
  • Jonathan M. Wells
Original Article
  • 36 Downloads

Abstract

Operative repair of complex conditions such as esophageal atresia and tracheoesophageal fistula (EA/TEF) is technically demanding, but few training opportunities exist outside the operating theater for surgeons to attain these skills. Learning them during surgery on actual neonates where the stakes are high, margins for error narrow, and where outcomes are influenced by technical expertise, is problematic. There is an increasing demand for high-fidelity simulation that can objectively measure performance. We developed such a simulator to measure force and motion reliably, allowing quantitative feedback of technical skill. A 3D-printed simulator for thoracoscopic repair of EA/TEF was instrumented with motion and force tracking components. A 3D mouse, inertial measurement unit (IMU), and optical sensor that captured force and motion data in four degrees of freedom (DOF) were calibrated and verified for accuracy. The 3D mouse had low average relative errors of 2.81%, 3.15%, and 6.15% for 0 mm, 10 mm offset in Y, and 10 mm offset in X, respectively. This increased to − 23.5% at an offset of 42 mm. The optical sensors and IMU displayed high precision and accuracy with low SDs and average relative errors, respectively. These parameters can be a useful measurement of performance for thoracoscopic EA/TEF simulation prior to surgery.

Graphical abstract

Inclusion of sensors into a high-fidelity simulator design can produce quantitative feedback which can be used to objectively asses performance of a technically difficult procedure. As a result, more surgical training can be done prior to operating on actual patients in the operating theater.

Keywords

Force Motion Simulation Neonatal Thoracoscopy 

Notes

Acknowledgements

We would like to acknowledge the generous advice and support given by Georges Azzie and Bojan Gavrilovic from Toronto Sick Kid’s Hospital and the University of Toronto.

References

  1. 1.
    Holcomb GW 3rd et al (2005) Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula: a multi-institutional analysis. Ann Surg.  https://doi.org/10.1097/01.sla.0000179649.15576.db
  2. 2.
    Gause CD, Hsiung G, Schwab B, Clifton M, Harmon CM, Barsness KA (2016) Advances in pediatric surgical education: a critical appraisal of two consecutive minimally invasive pediatric surgery training courses. J Laparoendosc Adv Surg Tech A.  https://doi.org/10.1089/lap.2016.0249 CrossRefGoogle Scholar
  3. 3.
    Sturm LP, Windsor JA, Cosman PH, Cregan PC, Hewett PJ, Maddern GJ (2008) A systematic review of surgical skills transfer after simulation-based training. Ann Surg.  https://doi.org/10.1097/SLA.0b013e318176bf24 CrossRefGoogle Scholar
  4. 4.
    Salkini MW, Doarn CR, Kiehl N, Broderick TJ, Donovan JF, Gaitonde K (2010) The role of haptic feedback in laparoscopic training using the LapMentor II. J Endourol.  https://doi.org/10.1089/end.2009.0307 CrossRefGoogle Scholar
  5. 5.
    Retrosi G, Cundy T, Haddad M, Clarke S (2015) Motion analysis–based skills training and assessment in pediatric laparoscopy: construct, concurrent, and content validity for the eoSim simulator. J Laparoendosc Adv Surg Tech A.  https://doi.org/10.1089/lap.2015.0069 CrossRefGoogle Scholar
  6. 6.
    Nasr A, Carrillo B, Gerstle JT, Azzie G (2014) Motion analysis in the pediatric laparoscopic surgery (PLS) simulator: validation and potential use in teaching and assessing surgical skills. J Pediatr Surg.  https://doi.org/10.1016/j.jpedsurg.2014.02.063 CrossRefGoogle Scholar
  7. 7.
    Harada K et al (2015) Quantitative pediatric surgical skill assessment using a rapid-prototyped chest model. Minim Invasive Ther Allied Technol.  https://doi.org/10.3109/13645706.2014.996161 CrossRefGoogle Scholar
  8. 8.
    Van Sickle KR, McClusky DA, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc Other Interv Tech.  https://doi.org/10.1007/s00464-004-8274-6 CrossRefGoogle Scholar
  9. 9.
    Rodrigues SP, Horeman T, Sam P, Dankelman J, Van Den Dobbelsteen JJ, Jansen FW (2014) Influence of visual force feedback on tissue handling in minimally invasive surgery. Br J Surg.  https://doi.org/10.1002/bjs.9669 CrossRefGoogle Scholar
  10. 10.
    Gavrilovic B, Fahy A, Carrillo B, Nasr A, Gerstle JT, Azzie G (2018) Development of an open-source laparoscopic simulator capable of motion and force assessment: high tech at low cost. J Laparoendosc Adv Surg Tech A 28(10):1253-1260.  https://doi.org/10.1089/lap.2018.0126 CrossRefGoogle Scholar
  11. 11.
    Horeman T, Rodrigues SP, Jansen FW, Dankelman J, Van Den Dobbelsteen JJ (2010) Force measurement platform for training and assessment of laparoscopic skills. Surg Endosc Other Interv Tech.  https://doi.org/10.1007/s00464-010-1096-9 CrossRefGoogle Scholar
  12. 12.
    Trejos AL, Patel RV, Naish MD, and Schlachta CM 2008 Design of a sensorized instrument for skills assessment and training in minimally invasive surgery. In Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob, 2008Google Scholar
  13. 13.
    Azzie G et al (2011) Development and validation of a pediatric laparoscopic surgery simulator. J Pediatr Surg.  https://doi.org/10.1016/j.jpedsurg.2011.02.026 CrossRefGoogle Scholar
  14. 14.
    Fedorov A et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging.  https://doi.org/10.1016/j.mri.2012.05.001 CrossRefGoogle Scholar
  15. 15.
    “Slicer” 2013. Available via https://www.slicer.org
  16. 16.
    “Blender” 2016. Available via http://www.blender.org
  17. 17.
    Spitz L (2007) Oesophageal atresia. Surgery 28(1):38–42Google Scholar
  18. 18.
    3DConnexion, “SpaceMouse® Wireless,” 2017. [Online]. Available: https://www.3dconnexion.com/spacemouse_wireless/en/. Accessed: 13-Nov-2017
  19. 19.
    V. Senft and Pascucci A 2011 Optoelectronic device for determining relative movements or relative positions of two objectsGoogle Scholar
  20. 20.
    PixArt Imaging 2016 PMW3360DM-T2QU: Optical Gaming Navigation Sensor PixArt Imaging Inc., [Online]. Available: http://www.pixart.com/upload/PMS0058-PMW3360DM-T2QU-NNDS-R1.30-06042016_20160902201411.pdf
  21. 21.
    Bosch Sensortec 2014 BNO055 Intelligent 9-axis absolute orientation sensor. [Online]. Available: https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
  22. 22.
    adafruit, Adafruit BNO055 Absolute Orientation Sensor. learn.adafruit.com. [Online]. Available: https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor. Accessed: 05-May-2018
  23. 23.
    Arduino 2016 Arduino – Reference. Lang RefGoogle Scholar
  24. 24.
    Riverbank Computing Limited, “PyQt 5.11.2,” 2018. [Online]. Available: https://pypi.org/project/PyQt5/
  25. 25.
    Splitcam 8.1.4, 2018 [Online]. Available: http://splitcamera.com/download.html
  26. 26.
    Bradski G 2000 The OpenCV Library. Dr Dobbs J. Softw. Tools.  https://doi.org/10.1111/0023-8333.50.s1.10
  27. 27.
    Bellard F 2018 ffmpeg 4.0.1. [Online]. Available: https://www.ffmpeg.org/
  28. 28.
    Liechti C 2017 pySerial 3.4. [Online]. Available: https://pypi.org/project/pyserial/. Accessed: 16-Mar-2018
  29. 29.
    Costa WL 2017 pyusb 1.0.2. [Online]. Available: https://pypi.org/project/pyusb/. Accessed: 21-Feb-2018
  30. 30.
    Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng.  https://doi.org/10.1109/MCSE.2007.55 CrossRefGoogle Scholar
  31. 31.
    NXP Semiconductors (2014) UM10204 I2C-bus specification and user manual. Semiconductors 3:64Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2020

Authors and Affiliations

  1. 1.Department of Medical Physics and Bioengineering, Christchurch HospitalChristchurchNew Zealand
  2. 2.Department of Paediatric SurgeryChristchurch HospitalChristchurchNew Zealand
  3. 3.Department of SurgeryUniversity of OtagoChristchurchNew Zealand

Personalised recommendations