Advertisement

Medical & Biological Engineering & Computing

, Volume 57, Issue 4, pp 765–775 | Cite as

Custom-designed orthopedic plates using semantic parameters and template

  • He KunjinEmail author
  • Zhang Xiang
  • Zhang Yuxue
Original Article
  • 117 Downloads

Abstract

To quickly construct and conveniently modify the ideal orthopedic plates for individuals, a novel approach for designing the customized orthopedic plates is put forward based on bone template and plate semantic parameters, thus avoiding the need for the detailed geometric operations and the design of orthopedic plates from scratch each time. Firstly, an average bone model (ABM) is created from the existing bone models, among which each bone has an equal contribution to the ABM, and then the template, which contains region of interest (ROI) and segmentation regions, is constructed based on the ABM. Secondly, attached on the template ROI, the abutted surface feature of an orthopedic plate is designed including definition of characteristic points and configuration of semantic parameters, with a directed graph proposed to define the constraint relationship between semantic parameters. Lastly, the custom-designed plate for the target bone can be adaptively generated with a group of new semantic parameter values which are obtained through the mapping from the template to the target bone model. This plate can be easily extended to suit the bones of the same type for individuals by just editing semantic parameters. This method supports modification for a custom-designed plate with semantic parameters, consequently promoting the quality and efficiency of orthopedic plate design.

Graphical abstract

Keywords

Semantic parameters Template Average bone model Customized plate Mapping 

Notes

Funding information

This research was supported by the Natural Science Foundation of China (grant no. 61472118), the Natural Science Foundation of China (grant no. 61772172), and the natural science foundation of Jiangsu Province in China (grant no. BK20141158).

References

  1. 1.
    Okazaki Y (2012) Development trends of custom-made orthopedic implants. J Artif Organs 15(1):20–25CrossRefGoogle Scholar
  2. 2.
    Haglin JM, Eltorai AEM, Gil JA (2016) Patient-specific orthopaedic implants. Orthop Surg 8(4):417–424CrossRefGoogle Scholar
  3. 3.
    Koen E, Vinod K (2012) Finding the best fit: anatomical data mining can improve the results for standard implant design, http://biomedical.materialise.com/white-papers-finding-best-fit-abstract-0
  4. 4.
    Kozic N, Weber S, Büchler P, Lutz C, Reimers N, Ballester MAG, Reyes M (2010) Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Med Image Anal 14(3):265–275CrossRefGoogle Scholar
  5. 5.
    Manić M, Stamenković Z, Mitković M (2015) Design of 3D model of customized anatomically adjusted implants. FU Mech Eng 13(3):269–282Google Scholar
  6. 6.
    Neto R, Marques T, Marta M (2015) Digital-based engineering tools for tailored design of medical implants. Mech Mach Sci(MMS): 733–741Google Scholar
  7. 7.
    Praun E, Sweldens W, Schröder P (2001) Consistent mesh parameterizations. Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM: 179–184Google Scholar
  8. 8.
    Kraevoy V, Sheffer A (2004) Cross-parameterization and compatible remeshing of 3D models. ACM Trans Graph (TOG). ACM 23(3):861–869CrossRefGoogle Scholar
  9. 9.
    Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE TVCG 14:213–230Google Scholar
  10. 10.
    Yumer ME, Chaudhuri S, Hodgins JK, Kara LB (2015) Semantic shape editing using deformation handles. ACM Trans Graph (TOG) 34(4):86CrossRefGoogle Scholar
  11. 11.
    Yumer ME, Kara LB (2014) Co-constrained handles for deformation in shape collections. ACM Trans Graph (TOG) 33(6):187CrossRefGoogle Scholar
  12. 12.
    Nyirenda PJ, Bronsvoort WF (2009) A framework for extendable freeform surface feature modelling. Comput Ind 60(1):35–47CrossRefGoogle Scholar
  13. 13.
    Langerak TR (2010) Local parameterization of freeform shapes using freeform feature recognition. Comput Aided Des 42(8):682–692CrossRefGoogle Scholar
  14. 14.
    Wang CCL (2005) Parameterization and parametric design of mannequins. Comput Aided Des 37(1):83–98CrossRefGoogle Scholar
  15. 15.
    Seo H, Magnenat-Thalmann N (2004) An example-based approach to human body manipulation. Graph Model 66(1):1–23CrossRefGoogle Scholar
  16. 16.
    Pernot JP, Giannini F, Falcidieno B, Leon JC (2009) Parameterised free-form feature templates. IEEE International Conference on IEEE: 140–147Google Scholar
  17. 17.
    Pernot JP, Falcidieno B, Giannini F (2008) Incorporating free-form features in aesthetic and engineering product design: state-of-the-art report. Comput Ind 59(6):626–637CrossRefGoogle Scholar
  18. 18.
    He K, Chen Z, Jiang J, Wang L (2014) Creation of user-defined freeform feature from surface models based on characteristic curves. Comput Ind 65(4):598–609CrossRefGoogle Scholar
  19. 19.
    Arnone JC (2011) A comprehensive simulation-based methodology for the design and optimization of orthopaedic internal fixation implants, Ph.D., University of Missouri, ColumbiaGoogle Scholar
  20. 20.
    Arnone JC, Ward CV, Della Rocca GJ (2010) Simulation-based design of orthopedic trauma implants[C]Am Soc Mech Eng(ASME): 465–474Google Scholar
  21. 21.
    Dobbe JGG, Vroemen JC, Strackee SD (2013) Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Med Biol Eng Comput 51(1–2):19–27CrossRefGoogle Scholar
  22. 22.
    Kaman MO, Celik N, Karakuzu S (2014) Numerical stress analysis of the plates used to treat the tibia bone fracture. J Appl Math Phys 2(06):304–309CrossRefGoogle Scholar
  23. 23.
    Andrade-Campos A, Ramos A, Simões JA (2012) A model of bone adaptation as a topology optimization process with contact. J Biomed Sci Eng 5(5):229–244CrossRefGoogle Scholar
  24. 24.
    Kutuk MA, Gov I (2013) Application of topology optimization to the tibial osteotomy fixation plates. Appl Bionics Biomech 10(2–3):125–133CrossRefGoogle Scholar
  25. 25.
    Grujicica M, Arakerea G, Xiea X, LaBergeb M, Grujicicb A, Wagnerc DW, Vallejoc A (2010) Design-optimization and material selection for a femoral-fracture fixation-plate implant. Mater Des 31(7):3463–3473CrossRefGoogle Scholar
  26. 26.
    Kim VG, Li W, Mitra NJ, Chaudhuri S, Diverdi S, Funkhouser T (2013) Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph 32(4):70Google Scholar
  27. 27.
    Allen B, Curless B, Popovic Z (2003) The space of human body shapes reconstruction and parameterization from range scans. ACM Trans. Graph 22(3):587–594CrossRefGoogle Scholar
  28. 28.
    Yeh IC, Lin CH, Sorkine O (2011) Template-based 3d model fitting using dual-domain relaxation. IEEE Trans Vis Comput Graph 17(8):1178–1190CrossRefGoogle Scholar
  29. 29.
    Myronenko A, Song X (2010) Point set registration coherent point drift. IEEE TPAMI 32(12):2262–2275CrossRefGoogle Scholar
  30. 30.
    Aiger D, Mitra NJ, Cohen-Or D (2008) 4-points congruent sets for robust pairwise surface registration. ACM Trans Graph (TOG) 27(3):85CrossRefGoogle Scholar
  31. 31.
    Tam GKL, Cheng ZQ, Lai YK (2013) Registration of 3D point clouds and meshes: a survey from rigid to non-rigid. IEEE TVCG 19(7):1199–1217Google Scholar
  32. 32.
    He K, Zhang R, Chen Z, Jiang J, Yuming Z (2017) An approach for generating an average bone template with semantic parameters. J Med Dev 11(3):031004 -031004-7 CrossRefGoogle Scholar
  33. 33.
    Chen X, He K, Chen Z, Xiang W (2015) Quick construction of femoral model using surface feature parameterization. Mol Cell Biomech 12:123–146Google Scholar
  34. 34.
    Park BK, Bae JH, Koo BY, Kim JJ (2014) Function-based morphing methodology for parameterizing patient-specific models of human proximal femurs. Comput Aided Des 2014(51):31–38CrossRefGoogle Scholar
  35. 35.
    Veselinovic M, Vitkovic N, Stevanovic D et al (2011) Study on creating human tibia geometrical models// E-health and bioengineering conference (EHB). IEEE:1–4Google Scholar
  36. 36.
    Kunjin H, Zeyu Z, Rongli Z (2015) Design of orthopedic plates and its modification based on feature. Mol Cell Biomech 12(4):265–286Google Scholar
  37. 37.
    Qin SF, Wright DK (2006) Progressive surface modelling scheme from unorganised curves. Comput Aided Des 38(10):1113–1122CrossRefGoogle Scholar
  38. 38.
    Dekkers E, Kobbelt L, Pawlicki R (2011) A sketching interface for feature curve recovery of free-form surfaces. Comput Aided Des 43(7):771–780CrossRefGoogle Scholar
  39. 39.
    He K, Chen Z, Zhao L (2011) A new method for classification and parametric representation of freeform surface feature. Int J Adv Manuf Technol 57(1–4):271–283CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.College of IOT EngineeringHohai UniversityChangzhouPeople’s Republic of China
  2. 2.Changzhou City Key Lab of Orthopedic Implants Digital TechnologyChangzhouPeople’s Republic of China

Personalised recommendations