Advertisement

Medical & Biological Engineering & Computing

, Volume 57, Issue 2, pp 543–564 | Cite as

Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk

  • Mainak Biswas
  • Venkatanareshbabu Kuppili
  • Luca Saba
  • Damodar Reddy Edla
  • Harman S. Suri
  • Aditya Sharma
  • Elisa Cuadrado-Godia
  • John R. Laird
  • Andrew Nicolaides
  • Jasjit S. SuriEmail author
Original Article

Abstract

Manual ultrasound (US)-based methods are adapted for lumen diameter (LD) measurement to estimate the risk of stroke but they are tedious, error prone, and subjective causing variability. We propose an automated deep learning (DL)-based system for lumen detection. The system consists of a combination of two DL systems: encoder and decoder for lumen segmentation. The encoder employs a 13-layer convolution neural network model (CNN) for rich feature extraction. The decoder employs three up-sample layers of fully convolution network (FCN) for lumen segmentation. Three sets of manual tracings were used during the training paradigm leading to the design of three DL systems. Cross-validation protocol was implemented for all three DL systems. Using the polyline distance metric, the precision of merit for three DL systems over 407 US scans was 99.61%, 97.75%, and 99.89%, respectively. The Jaccard index and Dice similarity of DL lumen segmented region against three ground truth (GT) regions were 0.94, 0.94, and 0.93 and 0.97, 0.97, and 0.97, respectively. The corresponding AUC for three DL systems was 0.95, 0.91, and 0.93. The experimental results demonstrated superior performance of proposed deep learning system over conventional methods in literature.

Graphical abstract

Keywords

Stroke Ultrasound Carotid Lumen diameter Deep learning CNN Performance 

Notes

Acknowledgments

The authors at the National Institute of Technology, Goa, India, would like to acknowledge MediaLab Asia, Ministry of Electronics and Information Technology, and the Government of India for their kind support.

Compliance with ethical standards

The ethics approval was granted by Toho University IRB, Japan. Informed consent was obtained from all the patients.

Supplementary material

References

  1. 1.
    Ward H et al (2012) Oxford handbook of epidemiology for clinicians. OUP OxfordGoogle Scholar
  2. 2.
  3. 3.
    Sobieszczyk P, Beckman J (2006) Carotid artery disease. Circulation 114(7):e244–e247CrossRefGoogle Scholar
  4. 4.
    “What is a stroke?”. www.nhlbi.nih.gov/health/health-topics/topics/stroke. June 22, (2016)
  5. 5.
    Bots ML, Grobbee DE, Hofman A, Witteman JCM (2005) Common carotid intima-media thickness and risk of acute myocardial infarction: the role of lumen diameter. Stroke 36(4):762–767CrossRefGoogle Scholar
  6. 6.
    Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96(5):1432–1437CrossRefGoogle Scholar
  7. 7.
    Tell GS, Polak JF, Ward BJ, Kittner SJ, Savage PJ, Robbins J (1994) Relation of smoking with carotid artery wall thickness and stenosis in older adults. The Cardiovascular Health Study. The Cardiovascular Health Study (CHS) Collaborative Research Group. Circulation 90(6):2905–2908CrossRefGoogle Scholar
  8. 8.
    Polak JF, O'Leary DH, Kronmal RA, Wolfson SK, Bond MG, Tracy RP, Gardin JM, Kittner SJ, Price TR, Savage PJ (1993) Sonographic evaluation of carotid artery atherosclerosis in the elderly: relationship of disease severity to stroke and transient ischemic attack. Radiology 188(2):363–370CrossRefGoogle Scholar
  9. 9.
    Nicolaides AN, Kakkos SK, Kyriacou E, Griffin M, Sabetai M, Thomas DJ, Tegos T, Geroulakos G, Labropoulos N, Doré CJ, Morris TP, Naylor R, Abbott AL, Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group (2010) Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J Vasc Surg 52(6):1486–1496CrossRefGoogle Scholar
  10. 10.
    Mann JM, Davies MJ (1996) Vulnerable plaque: relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94(5):928–931CrossRefGoogle Scholar
  11. 11.
    Dodge JT, Greg Brown B, Bolson EL, Dodge HT (1992) Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86(1):232–246CrossRefGoogle Scholar
  12. 12.
    Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R (2013) Pathophysiology of atherosclerosis plaque progression. Heart, Lung and Circulation 22(6):399–411CrossRefGoogle Scholar
  13. 13.
    Sarkar S, Ghosh S, Ghosh SK, Collier A (2007) Role of transcranial Doppler ultrasonography in stroke. Postgrad Med J 83(985):683–689CrossRefGoogle Scholar
  14. 14.
    Branas CC, Weingarten MS, Czeredarczuk M, Schafer PF (1994) Examination of carotid arteries with quantitative color Doppler flow imaging. J Ultrasound Med 13(2):121–127CrossRefGoogle Scholar
  15. 15.
    Mitchell DG (1990) Color Doppler imaging: principles, limitations, and artifacts. Radiology 177(1):1–10CrossRefGoogle Scholar
  16. 16.
    Mehra S (2010) Role of duplex Doppler sonography in arterial stenoses. Journal Indian Academy of Clinical Medicine 11(4):294–299Google Scholar
  17. 17.
    Jones SA, Leclerc H, Chatzimavroudis GP, Kim YH, Scott NA, Yoganathan AP (1996) The influence of acoustic impedance mismatch on poststenotic pulsed-doppler ultrasound measurements in a coronary artery model. Ultrasound Med Biol 22(5):623–634CrossRefGoogle Scholar
  18. 18.
    Hoeks APG, Brands PJ, Willigers JM, Reneman RS (1999) Non-invasive measurement of mechanical properties of arteries in health and disease. Proc Inst Mech Eng H J Eng Med 213(3):195–202CrossRefGoogle Scholar
  19. 19.
    Wendelhag I, Gustavsson T, Suurküla M, Berglund G, Wikstrand J (1991) Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system. Clin Physiol Funct Imaging 11(6):565–577CrossRefGoogle Scholar
  20. 20.
    Molinari F, Zeng G, Suri JS (2010) A state of the art review on intima–media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Prog Biomed 100(3):201–221CrossRefGoogle Scholar
  21. 21.
    Golemati S, Stoitsis J, Sifakis EG, Balkizas T, Nikita KS (2007) Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol 33(12):1918–1932CrossRefGoogle Scholar
  22. 22.
    Molinari F, Zeng G, Suri JS (2010) An integrated approach to computer based automated tracing and its validation for 200 common carotid arterial wall ultrasound images. J Ultrasound Med 29(3):399–418CrossRefGoogle Scholar
  23. 23.
    Loizou CP, Marios P (2013) Integrated system for the complete segmentation of the common carotid artery bifurcation in ultrasound images. Artificial Intelligence Applications and Innovations 412(1):292–301CrossRefGoogle Scholar
  24. 24.
    Suri JS, Liu K, Singh S et al (2002) Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6(1):8–28CrossRefGoogle Scholar
  25. 25.
    Suri JS, Laxminarayan S (2002) PDE and level sets. Springer Science & Business MediaGoogle Scholar
  26. 26.
    Araki T, Kumar PK, Suri HS, Ikeda N, Gupta A, Saba L et al (2016) Two automated techniques for carotid lumen diameter measurement: regional versus boundary approaches. J Med Syst 40(7):1–19CrossRefGoogle Scholar
  27. 27.
    Kumar PK, Araki T, Rajan J, Saba L, Lavra F, Ikeda N, Sharma AM et al (2017) Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach. Med Biol Eng Comput:1–20Google Scholar
  28. 28.
    Kuppili V et al (2017) Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. J Med Syst 41(10):152CrossRefGoogle Scholar
  29. 29.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRefGoogle Scholar
  30. 30.
    Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proc IEEE Conf Comput Vis Pattern RecognitGoogle Scholar
  31. 31.
    Teichmann M et al (2016) MultiNet: real-time joint semantic reasoning for autonomous driving. arXiv preprint arXiv:1612.07695Google Scholar
  32. 32.
    Molinari F, Meiburger KM, Saba L, Zeng G, Acharya UR, Ledda M, Nicolaides A, Suri JS (2012) Fully automated dual-snake formulation for carotid intima-media thickness measurement. J Ultrasound Med 31(7):1123–1136CrossRefGoogle Scholar
  33. 33.
    Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219CrossRefGoogle Scholar
  34. 34.
    Ciresan D et al (2012) Deep neural networks segment neuronal membranes in electron microscopy images. Advances in neural information processing systemsGoogle Scholar
  35. 35.
    Bar Y et al (2015) Chest pathology detection using deep learning with non-medical training. Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on. IEEEGoogle Scholar
  36. 36.
    Simonyan K and Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556Google Scholar
  37. 37.
    Hatipoglu N, Bilgin G (2017) Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med Biol Eng Comput 55(10):1829–1848CrossRefGoogle Scholar
  38. 38.
    Zhao J, Zhang M, Zhou Z, Chu J, Cao F (2017) Automatic detection and classification of leukocytes using convolutional neural networks. Med Biol Eng Comput 55(8):1287–1301CrossRefGoogle Scholar
  39. 39.
    García-Zapirain B, Elmogy M, El-Baz A, and Elmaghraby AS (2017) Classification of pressure ulcer tissues with 3D convolutional neural network. Med Biol Eng Comput 1–14Google Scholar
  40. 40.
    Suri JS, Haralick RM, Sheehan FH (2000) Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Appl 3(1):39–60CrossRefGoogle Scholar
  41. 41.
    Molinari F, Krishnamurthi G, Rajendra Acharya U, Vinitha Sree S, Zeng G, Saba L, Nicolaides A, Suri JS (2012) Hypothesis validation of far-wall brightness in carotid-artery ultrasound for feature-based IMT measurement using a combination of level-set segmentation and registration. IEEE Trans Instrum Meas 61(4):1054–1063CrossRefGoogle Scholar
  42. 42.
    Gutierrez MA, Pilon PE, Lage SG, Kopel L, Carvalho RT and Furuie SS (2002) Automatic measurement of carotid diameter and wall thickness in ultrasound images. Comput Cardiol 359–362Google Scholar
  43. 43.
    Sahani AK, Joseph J and Sivaprakasam M (2013) Automatic measurement of lumen diameter of carotid artery in A-mode ultrasound. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp 3873–3876Google Scholar
  44. 44.
    Saba L, Araki T, Krishna Kumar P, Rajan J, Lavra F, Ikeda N, Sharma AM, Shafique S, Nicolaides A, Laird JR, Gupta A (2016) Carotid inter-adventitial diameter is more strongly related to plaque score than lumen diameter: an automated tool for stroke analysis. J Clin Ultrasound 44(4):210–220CrossRefGoogle Scholar
  45. 45.
    Araki T, Kumar AM, Krishna Kumar P, Gupta A, Saba L, Rajan J, Lavra F, Sharma AM, Shafique S, Nicolaides A, Laird JR (2016) Ultrasound-based automated carotid lumen diameter/stenosis measurement and its validation system. Journal for Vascular Ultrasound 40(3):120–134CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  • Mainak Biswas
    • 1
  • Venkatanareshbabu Kuppili
    • 1
  • Luca Saba
    • 2
  • Damodar Reddy Edla
    • 1
  • Harman S. Suri
    • 3
    • 4
  • Aditya Sharma
    • 5
  • Elisa Cuadrado-Godia
    • 6
  • John R. Laird
    • 7
  • Andrew Nicolaides
    • 8
    • 9
  • Jasjit S. Suri
    • 4
    Email author
  1. 1.Department of Computer Science and EngineeringNIT GoaPondaIndia
  2. 2.Department of RadiologyA.O.U. CagliariCagliariItaly
  3. 3.Brown UniversityProvidenceUSA
  4. 4.Monitoring and Diagnostic DivisionAtheroPoint™RosevilleUSA
  5. 5.Cardiovascular DivisionUniversity of VirginiaCharlottesvilleUSA
  6. 6.Dept. of NeurologyIMIM - Hospital del MarBarcelonaSpain
  7. 7.Helena HospitalSt. HelenaUSA
  8. 8.Vascular Screening and Diagnostic CentreLondonUK
  9. 9.Department of Biological SciencesUniversity of CyprusNicosiaCyprus

Personalised recommendations