Advertisement

Medical & Biological Engineering & Computing

, Volume 57, Issue 2, pp 413–425 | Cite as

Physiological study of pulmonary involvement in adults with cystic fibrosis through simulated modeling of different clinical scenarios

  • Antonio Alberto Rodríguez SousaEmail author
  • Jesús M. Barandica Fernández
  • Jonathan Miller
  • Matías Mir-Montejano
Original article
  • 144 Downloads

Abstract

Cystic fibrosis is an inherited disorder of the cystic fibrosis transmembrane conductance regulator gene (CFTR) that affects the respiratory system. Current treatment is palliative, but there is a gene therapy under investigation which involves inserting a functional CFTR gene into affected cells. Given the clinical variety of the disease, it is necessary to characterize key indicators in its evolution (e.g., the number of functional alveolar sacs and its relationship with a healthy lung function), to anticipate its advancement. A dynamic model was used to evaluate the evolution of cystic fibrosis over time. We considered the application of conventional medical treatments and evaluated the benefits of the application of an experimental gene therapy that would reverse lung damage. Without treatment the life expectancy of the patient is low, but it is increased with the application of conventional treatments, being the progressive loss of the lung function inevitable. Simulating the application of a gene therapy, the life expectancy of patients would not be limited, given the recovery of all altered cellular processes. With this model we can make predictions that demonstrate the need for a curative treatment, in addition to presenting the evolution of pathology in a specific clinical setting.

Graphical abstract

Graphic representation of the analysis performed in the present work on simulation of different clinical situations regarding patients with cystic fibrosis of pulmonary involvement.

Keywords

CFTR protein (cystic fibrosis transmembrane conductance regulator) Dynamic modeling Genetic therapy Pulmonary function Respiratory physiology 

Notes

Acknowledgments

Authors want to thank the support received for this work by a predoctoral contract of researcher in training (UCM-Santander scholarship) granted by University Complutense of Madrid to Antonio Alberto Rodríguez Sousa and a predoctoral scholarship granted to Jonathan Pereira Miller. Finally, special thanks to Ms. María Aurora Rodríguez Sousa, for her unconditional support and advice in carrying out this work from its inception. In Memoriam: Sergio Rodríguez Valido.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Such, there is no necessary any informed consent.

Supplementary material

11517_2018_1885_MOESM1_ESM.pdf (857 kb)
ESM 1 (PDF 857 kb)
11517_2018_1885_MOESM2_ESM.pdf (479 kb)
ESM 2 (PDF 479 kb)
11517_2018_1885_MOESM3_ESM.xlsx (98 kb)
ESM 3 (XLSX 97 kb)

References

  1. 1.
    Astrup F, Andersen OS, Jorgensen K, Engel K (1960) The acid-base metabolism: a new approach. Lancet 275(7133):1035–1039.  https://doi.org/10.1016/S0140-6736(60)90930-2 CrossRefGoogle Scholar
  2. 2.
    Bansal A, Mayer-Hamblett N, Goss CH, Heagerty PJ (2017) A novel tool to evaluate the accuracy of predicting survival in cystic fibrosis. arXiv preprint arXiv:1706.09602Google Scholar
  3. 3.
    Bates JHT, Hunter IW, Sly PD, Okubo S, Filiatrault S, Milic-Emili J (1987) Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 25(2):136–140.  https://doi.org/10.1007/BF02442841 CrossRefGoogle Scholar
  4. 4.
    Bobadilla JL, Macek M, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 19(6):575–606.  https://doi.org/10.1002/humu.10041 CrossRefGoogle Scholar
  5. 5.
    Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents CH 48(7):2659–2664.  https://doi.org/10.1128/AAC.48.7.2659-2664.2004 CrossRefGoogle Scholar
  6. 6.
    Boucher RC (1999) Status of gene therapy for cystic fibrosis lung disease. J Clin Invest 103(4):441–445.  https://doi.org/10.1172/JCI6330 CrossRefGoogle Scholar
  7. 7.
    Bragonzi A, Horati H, Kerrigan L, Lorè NI, Scholte BJ, Weldon S (2017) Inflammation and host-pathogen interaction: cause and consequence in cystic fibrosis lung disease. J Cyst Fibros 17(2):40–45.  https://doi.org/10.1016/j.jcf.2017.10.004 CrossRefGoogle Scholar
  8. 8.
    Cantón R, Cobos N, De Gracia J, Baquero F, Honorato J, Gartner S, Álvarez A, Salcedo A, Oliver E, García-Quetglas E (2005) Tratamiento antimicrobiano frente a la colonización pulmonar por Pseudomonas aeruginosa en el paciente con fibrosis quística. Arch Bronconeumol 41:1–25.  https://doi.org/10.1016/S0300-2896(05)70731-6 CrossRefGoogle Scholar
  9. 9.
    Chow L, Brown NE, Kunimoto D (2002) An unusual case of pulmonary invasive aspergillosis and aspergilloma cured with voriconazole in a patient with cystic fibrosis. Clin Infect Dis 35(9):106–110.  https://doi.org/10.1086/343743 CrossRefGoogle Scholar
  10. 10.
    Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Coll Sci Imp U Tok 4(4):425–437.  https://doi.org/10.1016/0095-8522(49)90023-9 CrossRefGoogle Scholar
  11. 11.
    Corey M, Farewell V (1996) Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol 143(10):1007–1017.  https://doi.org/10.1093/oxfordjournals.aje.a008664 CrossRefGoogle Scholar
  12. 12.
    Craig WA, Ebert SC (1991) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis 74(Suppl):63–70.  https://doi.org/10.3109/inf.1990.22.suppl-74.01 Google Scholar
  13. 13.
    Crossle J, Elliot RB, Smith P (1979) Dried-blood spot screening for cystic fibrosis in the newborn. Lancet 313(8114):472–474.  https://doi.org/10.1016/S0140-6736(79)90825-0 CrossRefGoogle Scholar
  14. 14.
    Davies G, Reid L (1970) Growth of the alveoli and pulmonary arteries in childhood. Thorax 25(6):669–681.  https://doi.org/10.1136/thx.25.6.669 CrossRefGoogle Scholar
  15. 15.
    Davies JC, Geddes DM, Alton EW (2001) Gene therapy for cystic fibrosis. J Gene Med 3(5):409–417.  https://doi.org/10.1002/jgm.200 CrossRefGoogle Scholar
  16. 16.
    De Boeck K, Wilschanski M, Castellani C, Taylor C, Cuppens H, Dodge J, Sinaasappel M (2006) Cystic fibrosis: terminology and diagnostic algorithms. Thorax 61(7):627–635.  https://doi.org/10.1136/thx.2005.043539 CrossRefGoogle Scholar
  17. 17.
    Desmond KJ, Schwenk WF, Thomas E, Beaudry PH, Coates AL (1983) Immediate and long-term effects of chest physiotherapy in patients with cystic fibrosis. J Pediatr 103(4):538–542.  https://doi.org/10.1016/S0022-3476(83)80579-4 CrossRefGoogle Scholar
  18. 18.
    Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. New Engl J Med 354(3):229–240.  https://doi.org/10.1056/NEJMoa043900 CrossRefGoogle Scholar
  19. 19.
    Farrell PM (2008) The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 7(5):450–453.  https://doi.org/10.1016/j.jcf.2008.03.007 CrossRefGoogle Scholar
  20. 20.
    Ferrari S, Geddes DM, Alton EW (2002) Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv Drug Deliver Rev 54(11):1373–1393.  https://doi.org/10.1016/S0169-409X(02)00145-X CrossRefGoogle Scholar
  21. 21.
    Fisher KJ, Choi H, Burda J, Chen SJ, Wilson JM (1996) Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217(1):11–22.  https://doi.org/10.1006/viro.1996.0088 CrossRefGoogle Scholar
  22. 22.
    Flume PA, Mogayzel PJ Jr, Robinson KA, Goss CH, Rosenblatt RL, Kuhn RJ, Marshall BC (2009) Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 180(9):802–808.  https://doi.org/10.1164/rccm.200812-1845PP CrossRefGoogle Scholar
  23. 23.
    Folke M, Cernerud L, Ekström M, Hök B (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41(4):377–383.  https://doi.org/10.1007/BF02348078 CrossRefGoogle Scholar
  24. 24.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Resp Crit Care 168(8):918–951.  https://doi.org/10.1164/rccm.200304-505SO CrossRefGoogle Scholar
  25. 25.
    Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015.  https://doi.org/10.1002/jgm.3015 CrossRefGoogle Scholar
  26. 26.
    González CG, Lise AV, Felpeto AB (2013) Tratamiento de datos con R, Statistica y SPSS. Ediciones Díaz de Santos. Madrid, SpainGoogle Scholar
  27. 27.
    Guggino WB, Cebotaru L (2017) Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 17(10):1265–1273.  https://doi.org/10.1080/14712598.2017.1347630 CrossRefGoogle Scholar
  28. 28.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16(6):372–377.  https://doi.org/10.1007/BF01735174 CrossRefGoogle Scholar
  29. 29.
    Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346(6282):362–365.  https://doi.org/10.1038/346362a0 CrossRefGoogle Scholar
  30. 30.
    Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R, Boucher RC (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2(1):21–25.  https://doi.org/10.1038/ng0992-21 CrossRefGoogle Scholar
  31. 31.
    Kahl B, Herrmann M, Everding AS, Koch HG, Becker K, Harms E, Proctor RA, Peters G (1998) Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis 177(4):1023–1029.  https://doi.org/10.1086/515238 CrossRefGoogle Scholar
  32. 32.
    Koch C, Hoiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341(8852):1065–1069.  https://doi.org/10.1016/0140-6736(93)92422-P CrossRefGoogle Scholar
  33. 33.
    Konstan MW, Hilliard KA, Norvell TM, Berger M (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggests ongoing infection and inflammation. Am J Respir Crit Care Med 150(2):448–454.  https://doi.org/10.1164/ajrccm.150.2.8049828 CrossRefGoogle Scholar
  34. 34.
    Konstan MW, Byard PJ, Hoppel CL, Davis PB (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. New Engl J Med 332(13):848–854.  https://doi.org/10.1056/NEJM199503303321303 CrossRefGoogle Scholar
  35. 35.
    Konstan MW, Morgan WJ, Butler SM, Pasta DJ, Craib ML, Silva SJ, Stokes DC, Wohl MEB, Wagener JS, Regelmann WE, Johnson CA (2007) Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 151(2):134–139.  https://doi.org/10.1016/j.jpeds.2007.03.006 CrossRefGoogle Scholar
  36. 36.
    Lane S, Rippon HJ, Bishop AE (2007) Stem cells in lung repair and regeneration. Regen Med 2(4):407–415.  https://doi.org/10.2217/17460751.2.4.407 CrossRefGoogle Scholar
  37. 37.
    Le Bourgeois M, Sermet I, Bailly-Botuha C, Delacourt C, De Blic J (2011) Fungal infections in cystic fibrosis. Archives de pediatrie: organe officiel de la Societe francaise de. pediatrie 18:15–21.  https://doi.org/10.1016/S0929-693X(11)70936-8 Google Scholar
  38. 38.
    Madigan MT, Martinko JM, Parker J (2004) Brock biology of microorganism. Prentice Hall, New JerseyGoogle Scholar
  39. 39.
    Martínez-Garcia MA, Dimakou K (2018) COPD and bronchiectasis. In Bronchiectasis (pp. 107–127). Springer, Cham.  https://doi.org/10.1007/978-3-319-61452-6_9
  40. 40.
    Mekus F, Laabs U, Veeze H, Tümmler B (2003) Genes in the vicinity of CFTR modulate the cystic fibrosis phenotype in highly concordant or discordant F508del homozygous sib pairs. Hum Genet 112(1):1–11.  https://doi.org/10.1007/s00439-002-0839-7 CrossRefGoogle Scholar
  41. 41.
    Microsoft ® Excel ® 2016 MSO (16.0.8625.2121) 32 bits. Product ID: 00334–38962-20716-AA945. Accessed 28 May 2018Google Scholar
  42. 42.
    Microsoft ® PowerPoint ® 2016 MSO (16.0.8625.2121) 32 bits. Product ID: 00334–38962-20716-AA945. Accessed 21 May 2018Google Scholar
  43. 43.
    Mitchell R, Kumar V, Abbas AK, Fausto N, Aster JC (2007) Patología estructural y funcional. Elsevier, MadridGoogle Scholar
  44. 44.
    Morrissey BM (2007) Pathogenesis of bronchiectasis. Clin Chest Med 28(2):289–296.  https://doi.org/10.1016/j.ccm.2007.02.014 CrossRefGoogle Scholar
  45. 45.
    Oblatt-Montal M, Reddy GL, Iwamoto T, Tomich JM, Montal M (1994) Identification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel. Proc Natl Acad Sci 91(4):1495–1499.  https://doi.org/10.1073/pnas.91.4.1495 CrossRefGoogle Scholar
  46. 46.
    Oeppen J, Vaupel JW (2002) Broken limits to life expectancy. Science 296(5570):1029–1031.  https://doi.org/10.1126/science.1069675 CrossRefGoogle Scholar
  47. 47.
    Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288(5469):1251–1253.  https://doi.org/10.1126/science.288.5469.1251 CrossRefGoogle Scholar
  48. 48.
    Pastor FJ, Guarro J (2009) Micafungina en el tratamiento de la infección fúngica en modelos animales. Rev Iberoam Micol 26(1):42–48.  https://doi.org/10.1016/S1130-1406(09)70007-5 CrossRefGoogle Scholar
  49. 49.
    Patrick AE, Thomas PJ (2012) Development of CFTR structure. Front Pharmacol 3:162.  https://doi.org/10.3389/fphar.2012.00162 CrossRefGoogle Scholar
  50. 50.
    Polgar G, Weng TR (1979) The functional development of the respiratory system: from the period of gestation to adulthood 1, 2. Am Rev Respir Dis 120(3):625–695.  https://doi.org/10.1164/arrd.1979.120.3.625 Google Scholar
  51. 51.
    Rahman RNZA, Geok LP, Basri M, Salleh AB (2005) Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour Technol 96(4):429–436.  https://doi.org/10.1016/j.biortech.2004.06.012 CrossRefGoogle Scholar
  52. 52.
    Rajan S, Cacalano G, Bryan R, Ratner AJ, Sontich CU, van Heerckeren A, Davis P, Prince A (2000) Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Resp Cell Mol 23(3):304–312.  https://doi.org/10.1165/ajrcmb.23.3.4098 CrossRefGoogle Scholar
  53. 53.
    Robinson W (2000) Palliative care in cystic fibrosis. J Palliat Med 3(2):187–192.  https://doi.org/10.1089/10966210050085250 CrossRefGoogle Scholar
  54. 54.
    Rosenstein BJ, Cutting GR (1998) The diagnosis of cystic fibrosis: a consensus statement. J Pediatr 132(4):589–595.  https://doi.org/10.1016/S0022-3476(98)70344-0 CrossRefGoogle Scholar
  55. 55.
    Sainsbury KJ (1980) Effect of individual variability on the von Bertalanffy growth equation. Can J Fish Aquat Sci 37(2):241–247.  https://doi.org/10.1139/f80-031 CrossRefGoogle Scholar
  56. 56.
    Salh W, Bilton D, Dodd M, Webb AK (1989) Effect of exercise and physiotherapy in aiding sputum expectoration in adults with cystic fibrosis. Thorax 44(12):1006–1008.  https://doi.org/10.1136/thx.44.12.1006 CrossRefGoogle Scholar
  57. 57.
    Sanders DB, Bittner RC, Rosenfeld M, Hoffman LR, Redding GJ, Goss CH (2010) Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Resp Crit Care 182(5):627–632.  https://doi.org/10.1164/rccm.200909-1421OC CrossRefGoogle Scholar
  58. 58.
    Schüler D, Sermet-Gaudelus I, Wilschanski M, Ballmann M, Dechaux M, Edelman A, Martin H, Leaf T, Lebacq J, Lebecque P, Lenoir G, Stanke F, Wallemacq P, Tümmler B, Knowles MR (2004) Basic protocol for transepithelial nasal potential difference measurements. J Cyst Fibros 3:151–155.  https://doi.org/10.1016/j.jcf.2004.05.032 CrossRefGoogle Scholar
  59. 59.
    Segrelles G, Romero-de Tejada JG, Gómez-Púnter RM, Cano P, Martín C, Pinedo C, Girón RM (2009) Aspergiloma pulmonar con buena respuesta a antifúngico. Revista de Patología Respiratoria 12(3):124–127.  https://doi.org/10.1016/S1576-9895(09)70059-1 CrossRefGoogle Scholar
  60. 60.
    Steinbach WJ, Cramer RA, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, Kirkpatrick WR, Patterson TF, Benjamin DK Jr, Heitman J, Perfect JR (2006) Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5(7):1091–1103.  https://doi.org/10.1128/EC.00139-06 CrossRefGoogle Scholar
  61. 61.
    STELLA (2010) STELLA 9.1.4. Dynamic System Software. Isee System Inc. https://www.iseesystems.com/store/products/stella-online.aspx. Accessed 19 June 2018.
  62. 62.
    Stern RC (1997) The diagnosis of cystic fibrosis. New Engl J Med 336(7):487–491.  https://doi.org/10.1056/NEJM199702133360707 CrossRefGoogle Scholar
  63. 63.
    Tümmler B, Kiewitz C (1999) Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5(8):351–358.  https://doi.org/10.1016/S1357-4310(99)01506-3 CrossRefGoogle Scholar
  64. 64.
    Van Der Schans CP, Postma DS, Koeter GH, Rubin BK (1999) Physiotherapy and bronchial mucus transport. Eur Respir J 13(6):1477–1486.  https://doi.org/10.1034/j.1399-3003.1999.13f37.x CrossRefGoogle Scholar
  65. 65.
    Vega-Briceño LE, Sánchez D (2005) Fibrosis quística: Actualización en sus aspectos básicos. Rev Chil Pediatr 76(5):464–470.  https://doi.org/10.4067/S0370-41062005000500002 CrossRefGoogle Scholar
  66. 66.
    Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws. II). Hum Biol 10(2):181–213Google Scholar
  67. 67.
    West JB (2012) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  68. 68.
    Wheeler KA, Hurdman BF, Pitt JI (1991) Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int J Food Microbiol 12(2–3):141–149.  https://doi.org/10.1016/0168-1605(91)90063-U CrossRefGoogle Scholar
  69. 69.
    Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119.  https://doi.org/10.1146/annurev.med.60.041807.123500 CrossRefGoogle Scholar
  70. 70.
    Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75(2):207–216.  https://doi.org/10.1016/0092-8674(93)80063-K CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.Biological Sciences FacultyUniversity Complutense of MadridMadridSpain
  2. 2.National Museum of Natural Sciences–Superior Council of Scientific InvestigationsMadridSpain
  3. 3.Madrid Health Service, Mar Báltico Health CenterMadridSpain

Personalised recommendations