Advertisement

Measuring acute stress response through physiological signals: towards a quantitative assessment of stress

  • Adriana Arza
  • Jorge Mario Garzón-Rey
  • Jesús Lázaro
  • Eduardo Gil
  • Raul Lopez-Anton
  • Conchita de la Camara
  • Pablo Laguna
  • Raquel Bailon
  • Jordi Aguiló
Original Article
  • 262 Downloads

Abstract

Social and medical problems associated with stress are increasing globally and seriously affect mental health and well-being. However, an effective stress-level monitoring method is still not available. This paper presents a quantitative method for monitoring acute stress levels in healthy young people using biomarkers from physiological signals that can be unobtrusively monitored. Two states were induced to 40 volunteers, a basal state generated with a relaxation task and an acute stress state generated by applying a standard stress test that includes five different tasks. Standard psychological questionnaires and biochemical markers were utilized as ground truth of stress levels. A multivariable approach to comprehensively measure the physiological stress response is proposed using stress biomarkers derived from skin temperature, heart rate, and pulse wave signals. Acute physiological stress levels (total-range 0100 au) were continuously estimated every 1 min showing medians of 29.06 au in the relaxation tasks, while rising from 34.58 to 47.55 au in the stress tasks. Moreover, using the proposed method, five statistically different stress levels induced by the performed tasks were also measured. Results obtained show that, in these experimental conditions, stress can be monitored from unobtrusive biomarkers. Thus, a more general stress monitoring method could be derived based on this approach.

Graphical abstract

Stress measurements of different healthy young people throughout a Stress Session that includes a pre-relax stage (BLs), memory test (ST and MT), stress anticipation time (SA), video display (VD) and arithmetic task.

Keywords

Stress measurement Stress biomarker Multimodal analysis Multivariable biomarker Acute stress TSST Unobtrusive physiological signals 

Notes

Acknowledgements

This project has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 745755.

Funding information

This research was supported by MINECO (FIS-PI12/00514 and TIN2014-53567-R) and by the Centro de Investigación Biomédica en Red sobre Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) at the Instituto de Salud Carlos III de España.

Compliance with ethical standards

The UAB Ethics Committee approved the study protocol. Participants gave their written informed consent.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Cohen S, Janicki-deverts D, Miller GE (2007) Psychological stress and disease. JAMA—J Am Med Assoc 298(14):1685–1687.  https://doi.org/10.1001/jama.298.14.1685 CrossRefGoogle Scholar
  2. 2.
    American Psychological Association. (2013) By the numbers: a psychologically healthy workplace fact sheet. Retrieved from http://www.apaexcellence.org/resources/goodcompany/newsletter/article/487
  3. 3.
    Epel ES, Crosswell AD, Mayer SE, Prather AA, Slavich GM, Puterman E, Mendes WB (2018) More than a feeling: a unified view of stress measurement for population science. Front Neuroendocrinol 49:146–169.  https://doi.org/10.1016/J.YFRNE.2018.03.001 CrossRefPubMedGoogle Scholar
  4. 4.
    Lagraauw HM, Kuiper J, Bot I (2015) Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun 50:18–30.  https://doi.org/10.1016/J.BBI.2015.08.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Mariotti A (2015) The effects of chronic stress on health: new insights into the molecular mechanisms of brain–body communication. Future Sci OA 1(3):fso.15.21.  https://doi.org/10.4155/fso.15.21 CrossRefGoogle Scholar
  6. 6.
    Tamashiro KL, Sakai RR, Shively CA, Karatsoreos IN, Reagan LP (2011) Chronic stress, metabolism, and metabolic syndrome. Stress 14(5):468–474.  https://doi.org/10.3109/10253890.2011.606341 CrossRefPubMedGoogle Scholar
  7. 7.
    World Health Organization (2015) WHO | Mental health atlas 2014. WHO, Geneva, 69 pGoogle Scholar
  8. 8.
    Aguilo J, Ferrer Salvans P, Garcia Rozo A, Armario A, Corbi A, Cambra FJ et al (2015) Project ES3: attempting to quantify and measure the level of stress. Rev Neurol 61(9):405–415 https://www.ncbi.nlm.nih.gov/pubmed/26503316 PubMedGoogle Scholar
  9. 9.
    Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1:1383–1392CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lazarus RS (1993) From psychological stress to the emotions: a history of changing outlooks. Annu Rev Psychol 44:1–21.  https://doi.org/10.1146/annurev.ps.44.020193.000245 CrossRefPubMedGoogle Scholar
  11. 11.
    Hellhammer, D. H., Stone, A. A., Hellhammer, J., & Broderick, J. (2010). Measuring stress. In Encyclopedia of Behavioral Neuroscience (Vol. 2, pp. 186–191). Elsevier Ltd.Google Scholar
  12. 12.
    Goyal A, Singh S, Vir D, Pershad D (2016) Automation of stress recognition using subjective or objective measures. Psychol Stud 61(4):348–364.  https://doi.org/10.1007/s12646-016-0379-1 CrossRefGoogle Scholar
  13. 13.
    Khoulji S, García E, Aguiló S, Arza A, Garzón-Rey JM, Aguilóa J (2017) Psychological and physiological profiles in oncology caregivers: a multivariable cross-sectional study. Trans Mach Learn Artif Intell 5(4).  https://doi.org/10.14738/tmlai.54.3291
  14. 14.
    Urwyler SA, Schuetz P, Sailer C, & Christ-Crain M (2015) Copeptin as a stress marker prior and after a written examination—the CoEXAM study. Stress (Amsterdam, Netherlands), 1–4.  https://doi.org/10.3109/10253890.2014.993966
  15. 15.
    Nater UM, Ditzen B, Strahler J, Ehlert U (2013) Effects of orthostasis on endocrine responses to psychosocial stress. Int J Psychophysiol 90(3):341–346.  https://doi.org/10.1016/j.ijpsycho.2013.10.010 CrossRefPubMedGoogle Scholar
  16. 16.
    Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2014) Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test. Neurosci Biobehav Rev 38:94–124.  https://doi.org/10.1016/j.neubiorev.2013.11.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Armario A, Marti O, Molina T, de Pablo J, Valdes M (1996) Acute stress markers in humans: response of plasma glucose, cortisol and prolactin to two examinations differing in the anxiety they provoke. Psychoneuroendocrinology 21(1):17–24 https://www.ncbi.nlm.nih.gov/pubmed/8778900 CrossRefPubMedGoogle Scholar
  18. 18.
    Campbell J, Ehlert U (2012) Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology 37(8):1111–1134.  https://doi.org/10.1016/j.psyneuen.2011.12.010 CrossRefPubMedGoogle Scholar
  19. 19.
    Alberdi A, Aztiria A, Basarab A (2016) Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J Biomed Inform 59(C):49–75.  https://doi.org/10.1016/j.jbi.2015.11.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Oken BS, Chamine I, Wakeland W (2015) A systems approach to stress, stressors and resilience in humans. Behav Brain Res 282:144–154.  https://doi.org/10.1016/j.bbr.2014.12.047 CrossRefPubMedGoogle Scholar
  21. 21.
    Chen L l, Zhao YY, Fei P, Zhang J, Zou JZ (2017) Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Systems with Applications 85:279–291CrossRefGoogle Scholar
  22. 22.
    Han L, Zhang Q, Chen X, Zhan Q, Yang T, Zhao Z (2017) Detecting work-related stress with a wearable device. Comput Ind 90:42–49.  https://doi.org/10.1016/j.compind.2017.05.004 CrossRefGoogle Scholar
  23. 23.
    Gjoreski M, Luštrek M, Gams M, Gjoreski H (2017) Monitoring stress with a wrist device using context. J Biomed Inform 73:159–170.  https://doi.org/10.1016/J.JBI.2017.08.006 CrossRefPubMedGoogle Scholar
  24. 24.
    Mahmoud R, Shanableh T, Bodala IP, Thakor NV, Al-Nashash H (2017) Novel classification system for classifying cognitive workload levels under vague visual stimulation. IEEE Sensors J 17(21):7019–7028.  https://doi.org/10.1109/JSEN.2017.2727539 CrossRefGoogle Scholar
  25. 25.
    Vinkers CH, Penning R, Hellhammer J, Verster JC, Klaessens JHGM, Olivier B, Kalkman CJ (2013) The effect of stress on core and peripheral body temperature in humans. Stress 16(5):520–530.  https://doi.org/10.3109/10253890.2013.807243 CrossRefPubMedGoogle Scholar
  26. 26.
    Cvetković B, Gjoreski M, Šorn J, Maslov P, Kosiedowski M, Bogdański M et al (2017) Real-time physical activity and mental stress management with a wristband and a smartphone. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers on—UbiComp ‘17. ACM Press, New York, pp 225–228.  https://doi.org/10.1145/3123024.3123184 CrossRefGoogle Scholar
  27. 27.
    Picard RRW, Fedor S, & Ayzenberg Y (2014) Multiple arousal theory and daily-life electrodermal activity asymmetry. Emotion Review Google Scholar
  28. 28.
    Kukolja D, Popović S, Horvat M, Kovač B, Ćosić K (2014) Comparative analysis of emotion estimation methods based on physiological measurements for real-time applications. Int J Hum Comput Stud 72(10–11):717–727.  https://doi.org/10.1016/j.ijhcs.2014.05.006 CrossRefGoogle Scholar
  29. 29.
    Healey JAJA Ja, Picard RWRWRW (2005) Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst 6(2):156–166.  https://doi.org/10.1109/TITS.2005.848368 CrossRefGoogle Scholar
  30. 30.
    Seoane F, Mohino-Herranz I, Ferreira J, Alvarez L, Buendia R, Ayllón D, Llerena C, Gil-Pita R (2014) Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14(4):7120–7141.  https://doi.org/10.3390/s140407120 CrossRefPubMedGoogle Scholar
  31. 31.
    Katsis CD, Katertsidis NS, & Fotiadis DI (2011) An integrated system based on physiological signals for the assessment of affective states in patients with anxiety disorders. In Biomedical Signal Processing and Control (Vol. 6, pp. 261–268).  https://doi.org/10.1016/j.bspc.2010.12.001
  32. 32.
    Broek EL, Sluis F, Dijkstra T (2013) Cross-validation of bimodal health-related stress assessment. Pers Ubiquit Comput 17(2):215–227.  https://doi.org/10.1007/s00779-011-0468-z CrossRefGoogle Scholar
  33. 33.
    de Santos Sierra A, Sanchez Avila C, Guerra Casanova J, Bailador del Pozo G, Sierra ADS, Ávila CS et al (2011) A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans Ind Electron 58(10):4857–4865.  https://doi.org/10.1109/TIE.2010.2103538 CrossRefGoogle Scholar
  34. 34.
    Hellhammer J, Schubert M (2012) The physiological response to Trier Social Stress Test relates to subjective measures of stress during but not before or after the test. Psychoneuroendocrinology 37(1):119–124CrossRefPubMedGoogle Scholar
  35. 35.
    Baumeister R, & Vohs K (2007) Encyclopedia of social psychology. (E. Harmon-Jones & P. Winkielman, Eds.) Social Neuroscience. California: SAGE Publications, Inc.Google Scholar
  36. 36.
    Jönsson P, Wallergård M, Osterberg K, Hansen AM, Johansson G, Karlson B (2010) Cardiovascular and cortisol reactivity and habituation to a virtual reality version of the Trier Social Stress Test: a pilot study. Psychoneuroendocrinology 35(9):1397–1403.  https://doi.org/10.1016/j.psyneuen.2010.04.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Kudielka BM, Hellhammer DH, & Kirschbaum C (2007). Ten years of research with the Trier Social Stress Test. In Social Neuroscience (pp. 56–83).  https://doi.org/10.4135/9781412956253.n539
  38. 38.
    Giles GE, Mahoney CR, Brunyé TT, Taylor HA, Kanarek RB (2014) Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms. PLoS One 9(12):e113618.  https://doi.org/10.1371/journal.pone.0113618 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rabasa C, Gagliano H, Pastor-Ciurana J, Fuentes S, Belda X, Nadal R, Armario A (2015) Adaptation of the hypothalamus–pituitary–adrenal axis to daily repeated stress does not follow the rules of habituation: a new perspective. Neurosci Biobehav Rev 56:35–49.  https://doi.org/10.1016/J.NEUBIOREV.2015.06.013 CrossRefPubMedGoogle Scholar
  40. 40.
    UAB. (2014) ES3 stress measuring project| Universitat Autònoma de Barcelona. Retrieved June 17, 2014, from http://www.es3-project.es/
  41. 41.
    Stetter F, Kupper S (2002) Autogenic training: a meta-analysis of clinical outcome studies. Appl Psychophysiol Biofeedback 27(1):45–98.  https://doi.org/10.1023/A:1014576505223 CrossRefPubMedGoogle Scholar
  42. 42.
    Pujol J, Giménez M, Ortiz H, Soriano-Mas C, López-Solà M, Farré M, Deus J, Merlo-Pich E, Harrison BJ, Cardoner N, Navinés R, Martín-Santos R (2013) Neural response to the observable self in social anxiety disorder. Psychol Med 43(4):721–731.  https://doi.org/10.1017/S0033291712001857 CrossRefPubMedGoogle Scholar
  43. 43.
    Arza A, Garzón JM, Hemando A, Aguiló J, Bailon R, Garzon JM, … Bailon R (2015) Towards an objective measurement of emotional stress: preliminary analysis based on heart rate variability. In Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 3331–3334). IEEE.  https://doi.org/10.1109/EMBC.2015.7319105
  44. 44.
    Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Academic PressGoogle Scholar
  45. 45.
    Gil E, María Vergara J, Laguna P (2008) Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. Biomed Signal Process Control 3(3):267–277.  https://doi.org/10.1016/j.bspc.2007.12.002 CrossRefGoogle Scholar
  46. 46.
    Elgendi M (2012) On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev 8(1):14–25 https://www.ncbi.nlm.nih.gov/pubmed/22845812 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arza A, Lazaro J, Gil E, Laguna P, Aguilo J, & Bailon R (2013) Pulse transit time and pulse width as potential measure for estimating beat-to-beat systolic and diastolic blood pressure. In Computing in Cardiology Conference (CinC) (pp. 887–890). IEEEGoogle Scholar
  48. 48.
    Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1–R39.  https://doi.org/10.1088/0967-3334/28/3/R01
  49. 49.
    Lázaro J, Gil E, Bailón R, Mincholé A, Laguna P (2013) Deriving respiration from photoplethysmographic pulse width. Med Biol Eng Comput 51(1–2):233–242.  https://doi.org/10.1007/s11517-012-0954-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. J Health Soc Behav 24(4):385–396CrossRefPubMedGoogle Scholar
  51. 51.
    Spielberger CD (2010) State-trait anxiety inventory. In: The Corsini encyclopedia of psychology. John Wiley & Sons, Inc., Hoboken, pp 1–1.  https://doi.org/10.1002/9780470479216.corpsy0943 CrossRefGoogle Scholar
  52. 52.
    Nater UM, Rohleder N, Schlotz W, Ehlert U, Kirschbaum C (2007) Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology 32(4):392–401.  https://doi.org/10.1016/j.psyneuen.2007.02.007 CrossRefPubMedGoogle Scholar
  53. 53.
    Jozami Guldberg LS (2014) Estrés psicosocial agudo: Efectos sobre el cortisol y α-amilasa en saliva. Universidad Autónoma de BarcelonaGoogle Scholar
  54. 54.
    Garzon-Rey JM, Arza A, De-la-Camara C, Lobo A, Armario A, Aguilo J (2017) An approach to an acute emotional stress reference scale. Rev Neurol 64(12):529–537 https://www.ncbi.nlm.nih.gov/pubmed/28608352 PubMedGoogle Scholar
  55. 55.
    Engert V, Vogel S, Efanov SI, Duchesne A, Corbo V, Ali N, Pruessner JC (2011) Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology 36(9):1294–1302.  https://doi.org/10.1016/j.psyneuen.2011.02.018 CrossRefPubMedGoogle Scholar
  56. 56.
    Gil E, Orini M, Bailón R, Vergara JM, Mainardi L, Laguna P (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31(9):1271–1290.  https://doi.org/10.1088/0967-3334/31/9/015 CrossRefPubMedGoogle Scholar
  57. 57.
    Hernando A, Lázaro J, Gil E, Arza A, Garzón JM, López-Antón R et al (2016) Inclusion of respiratory frequency information in heart rate variability analysis for stress assessment. IEEE J Biomed Health Inform 20(4):1–1025.  https://doi.org/10.1109/JBHI.2016.2553578 CrossRefGoogle Scholar
  58. 58.
    Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 4:26.  https://doi.org/10.3389/fphys.2013.00026 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065.  https://doi.org/10.1161/01.cir.93.5.1043
  60. 60.
    Hernando D, Hernando A, Casajús JA, Laguna P, Garatachea N, Bailón R (2018) Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing. Med Biol Eng Comput 56(5):781–794.  https://doi.org/10.1007/s11517-017-1724-9 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)ZaragozaSpain
  2. 2.Microelectronics and Electronic Systems DepartmentAutonomous University of BarcelonaBellaterraSpain
  3. 3.Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
  4. 4.BSICoS Group, Aragon Institute of Engineering Research (I3A), IIS AragónUniversity of ZaragozaZaragozaSpain
  5. 5.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  6. 6.Psychology and Sociology Department of University of ZaragozaZaragozaSpain
  7. 7.Psychiatric Service of Zaragoza Clinical HospitalZaragozaSpain
  8. 8.Microeletronics National CenterIMB-CNM, CSICBarcelonaSpain

Personalised recommendations