Medical & Biological Engineering & Computing

, Volume 57, Issue 1, pp 99–106 | Cite as

Multi-parametric cardiorespiratory analysis in late-preterm, early-term, and full-term infants at birth

  • Maristella LucchiniEmail author
  • Nina Burtchen
  • William P. Fifer
  • Maria G. Signorini
Original Article


Infants born at 35–37 weeks’ gestational age (GA) are at higher risk for a range of pathological conditions and poorer neurodevelopmental outcomes. However, mechanisms responsible are not fully understood. The purpose of this paper is to use traditional and novel techniques to assess newborn autonomic development as a function of GA at birth, focusing on cardiorespiratory regulation. ECG and respiration were acquired during sleep on 329 healthy newborns. Infants were divided into GA groups: 35–36 weeks (late preterm (LPT)), 37–38 weeks (early term (ET)), and 39–40 weeks (full term (FT)). Time domain, frequency domain, and non-linear measures were calculated. Increased heart rate short-term variability and complexity as a function of GA were observed in time domain and non-linear measures. Decreasing inter-breath interval variability was found as a function of GA, with increasing linear cardiorespiratory coupling. A complexity parameter (quadratic sample entropy) was less affected by arrhythmias and artifacts when compared to traditional measures. Results suggest lower maturation in LPT, with less developed cardiorespiratory regulation. This may confer risk for altered outcome, convergent with epidemiological findings. Reported examples show that a combination of methodological approaches can be beneficial to characterize autonomic maturation.

Graphical abstract


Autonomic nervous system Prematurity Non-linear analysis Heart rate variability 


Funding information

The writing of this manuscript was supported by the Sackler Institute of Developmental Psychobiology at Columbia University and by National Institute of Health grants NIH Grants R37 HD32774 (WPF) and T32 MH018264 (NB) and by Rotary International Global Grant. This publication was also supported by the National Center for Advancing Translational Sciences and National Institutes of Health, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Glossary of terms


Autonomic nervous system


Early-term infants


Full-term infants


Gestational age


High frequency


Hours of life


Heart rate


Heart rate variability


Inter-breath interval


Late-preterm infants


Mode of delivery


Normal to normal intervals, as the RR distances excluding anomalous beats


Quadratic sample entropy


Root mean of successive NN differences


distance between consecutive QRS peaks


Standard deviation of NN


Sudden infant death syndrome


  1. 1.
    Adamkin DH (2013) Postnatal glucose homeostasis in late-preterm and term infants. Pediatrics 127(3):575–579. CrossRefGoogle Scholar
  2. 2.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  3. 3.
    DeMazumder D, Limpitikul WB, Dorante M, Dey S, Mukhopadhyay B, Zhang Y, Moorman JR, Cheng A, Berger RD, Guallar E, Jones SR, Tomaselli GF (2016) Entropy of cardiac repolarization predicts ventricular arrhythmias and mortality in patients receiving an implantable cardioverter-defibrillator for primary prevention of sudden death. Europace 18(12):1818–1828. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dubin AM (2000) Arrhythmias in the Newborn. NeoReviews 1(8):e146 LP–e14e151CrossRefGoogle Scholar
  5. 5.
    Faes L, Pinna GD, Porta A, Maestri R, Nollo G (2004) Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans Biomed Eng 51(7):1156–1166. CrossRefPubMedGoogle Scholar
  6. 6.
    Ferrario M, Signorini MG, Magenes G (2005) Complexity analysis of the fetal heart rate for the identification of pathology in fetuses. Computers in Cardiology 2005 32(1):989–992. CrossRefGoogle Scholar
  7. 7.
    Garcia AJ, Koschnitzky JE, Ramirez J-M (2013) The physiological determinants of sudden infant death syndrome. Respir Physiol Neurobiol 189(2):288–300. CrossRefPubMedGoogle Scholar
  8. 8.
    Hathorn MKS (1987) Respiratory sinus arrhythmia in new-born infants. J Physiol 385(1987):1–12CrossRefGoogle Scholar
  9. 9.
    Hoffman H, Damus K, Hillman L, Krongrad E (1988) Risk factors for SIDS: results of the national institute of child health and human development SIDS cooperative epidemiological study. Ann N Y Acad Sci 533(1):13–30CrossRefGoogle Scholar
  10. 10.
    Isler JR, Thai T, Myers MM, Fifer WP (2016) An automated method for coding sleep states in human infants based on respiratory rate variability. Dev Psychobiol 58(8):1108–1115. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Javorka M, Zila I, Balhárek T, Javorka K (2002) Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz J Med Biol Res 35:991–1000. CrossRefPubMedGoogle Scholar
  12. 12.
    Kaufmann T, Sütterlin S, Schulz SM, Vögele C (2011) ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav Res Methods 43(4):1161–1170. CrossRefPubMedGoogle Scholar
  13. 13.
    Killen SAS, Fish FA (2008) Fetal and neonatal arrhythmias. NeoReviews 9:e242–e252. CrossRefGoogle Scholar
  14. 14.
    Kugelman A, Colin AA (2013) Late preterm infants: near term but still in a critical developmental time period. Pediatrics 132(4):31–4005CrossRefGoogle Scholar
  15. 15.
    Lake, D.E. 2011. Improved entropy rate estimation in physiological data. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. (2011), 1463–1466. DOI:
  16. 16.
    Lake DE (2006) Renyi entropy measures of heart rate Gaussianity. IEEE Trans Biomed Eng 53(1):21–27. CrossRefPubMedGoogle Scholar
  17. 17.
    Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Phys Regul Integr Comp Phys 283:R789–R797. CrossRefGoogle Scholar
  18. 18.
    Loftin RW, Habli M, Snyder CC, Cormier CM, Lewis DF, DeFranco EA (2010) Late preterm birth. Rev Obstet Gynecol 3(1):10–19. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lucchini, M., Fifer, W.P., Ferrario, M. and Signorini, M.G. 2016. Feasibility study for the assessment of cardio-respiratory coupling in newborn infants. Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the 5509–5512Google Scholar
  20. 20.
    Lucchini M, Fifer WP, Sahni R, Signorini MG (2016) Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants. Physiol Meas 37(9):1436–1446. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lucchini M, Pini N, Fifer WP, Burtchen N, Signorini MG (2017) Entropy information of cardiorespiratory dynamics in Neonates during sleep. Entropy 19:5. CrossRefGoogle Scholar
  22. 22.
    Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S, Mathews TJ, Statistics, V (2015) National Vital Statistics Reports Births: Final data for 2013. Statistics 64(1):1–104Google Scholar
  23. 23.
    Mulder LJM (1992) Measurement and analysis-methods of heart-rate and respiration for use in applied environments. Biol Psychol 34(2–3):205–236. CrossRefPubMedGoogle Scholar
  24. 24.
    Palazzolo JA, Estafanous FG, Murray PA (1998) Entropy measures of heart rate variation in conscious dogs. Am J Phys 274(4 Pt 2):H1099–H1105Google Scholar
  25. 25.
    Peltola MA (2012) Role of editing of R-R intervals in the analysis of heart rate variability. Front Physiol 3:1–10. CrossRefGoogle Scholar
  26. 26.
    Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301. CrossRefPubMedGoogle Scholar
  27. 27.
    Porges SW, Doussard-Roosevelt JA, Stifter CA, McClenny BD, Riniolo TC (1999) Sleep state and vagal regulation of heart period patterns in the human newborn: an extension of the polyvagal theory. Psychophysiology 36:14–21. CrossRefPubMedGoogle Scholar
  28. 28.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):2039–2049CrossRefGoogle Scholar
  29. 29.
    Rosenstock EG, Cassuto Y, Zmora E (1999) Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations. Acta Paediatr (Oslo, Norway : 1992) 88(5):477–482. CrossRefPubMedGoogle Scholar
  30. 30.
    Salo MA, Huikuri HV, Seppänen T (2001) Ectopic beats in heart rate variability analysis: effects of editing on time and frequency domain measures. Ann Noninvasive Electrocardiol 6(1):5–17. CrossRefPubMedGoogle Scholar
  31. 31.
    Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9):1341–1353. CrossRefPubMedGoogle Scholar
  32. 32.
    Shah P, Kaciroti N, Richards B, Oh W, Lumeng JC (2016) Developmental outcomes of late preterm infants from infancy to kindergarten. Pediatrics 138(2):8–15. CrossRefGoogle Scholar
  33. 33.
    Signorini MG, Magenes G, Cerutti S, Arduini D (2003) Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. 50(3):365–374Google Scholar
  34. 34.
    Task Force of the European Society of Cardiology (1996) Heart rate variability. Standards of measurement physiological interpretation and clinical use. Circulation 93:1043–1065. CrossRefGoogle Scholar
  35. 35.
    Thompson JMD, Mitchell EA (2006) Are the risk factors for SIDS different for preterm and term infants? Arch Dis Child 91(2):107–111. CrossRefPubMedGoogle Scholar
  36. 36.
    Vohr B (2013) Long-term outcomes of moderately preterm, late preterm, and early term infants. Clin Perinatol 40(4):739–751. CrossRefPubMedGoogle Scholar
  37. 37.
    Voss A, Hnatkova K, Wessel N (1998) Multiparametric analysis of heart rate variability used for risk stratification among survivors of acute myocardial infarction. Pacing Clin Electrophysiol 21:186–196CrossRefGoogle Scholar
  38. 38.
    Wang M, Dorer D, Fleming M, Catlin E (2004) Clinical outcomes of near-term infants. Pediatrics 114(2 PG-372-6):372–376 DOI: CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2018

Authors and Affiliations

  1. 1.Department of PsychiatryColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanoItaly
  3. 3.Department of Psychosomatic Medicine and PsychotherapyUniversity of FreiburgFreiburgGermany

Personalised recommendations