Advertisement

Medical & Biological Engineering & Computing

, Volume 56, Issue 7, pp 1211–1225 | Cite as

A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data

  • Jianhua Luo
  • Zhiying Mou
  • Binjie Qin
  • Wanqing Li
  • Philip Ogunbona
  • Marc C. Robini
  • Yuemin Zhu
Original Article
  • 181 Downloads

Abstract

Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data.

Graphical abstract

Two Real Images and their sparsified images by singularizing operator

Keywords

Total variation (TV) Magnetic resonance imaging (MRI) Undersampled k-space data Singular k-space model Image reconstruction 

Notes

Funding information

This work was supported in part by China Aviation Industry under the project (No. cxy204SHJD22, 2015), the National Natural Science Foundation of China (61271320 and 60872102), Medical Engineering Cross Fund of Shanghai Jiao Tong University (YG2014MS29), the Region Auvergne-Rhône-Alpes of France under the project CMIRA COOPERA/EXPLORA PRO 2016 and the 2010 UIC International Linkage Grant of University of Wollongong, Australia.

References

  1. 1.
    Hasse A et al (1986) FLASH imaging, rapid NMR imaging using low flip-angle pulse. J Magn Reson 67:258–266Google Scholar
  2. 2.
    Untenberger, Markus, Zhengguo Tan, Dirk Voit, Arun A. Joseph, Volkert Roeloffs, K. Dietmar Merboldt, Sebastian Schätz, and Jens Frahm (2015) Advances in real- time phase- contrast flow MRI using asymmetric radial gradient echoes. Magn Reson MedGoogle Scholar
  3. 3.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210.  https://doi.org/10.1002/mrm.10171 CrossRefPubMedGoogle Scholar
  4. 4.
    Sayin O, Haris S, Muz Zviman M, Griswold M, Halperin H, Seiberlich N, Herzka DA (2017) Real- time free-breathing cardiac imaging with self- calibrated through- time radial GRAPPA. Magn Reson Med 77(1):250–264.  https://doi.org/10.1002/mrm.26112 CrossRefPubMedGoogle Scholar
  5. 5.
    Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N (2014) Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging 40(5):1022–1040.  https://doi.org/10.1002/jmri.24521 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med, 50 :1031–1042, 2003, 5, DOI:  https://doi.org/10.1002/mrm.10611
  7. 7.
    Binter C, Ramb R, Jung B, Kozerke S (2016) A g-factor metric for k-t SENSE and k-t PCA based parallel imaging. Magn Reson Med 75(2):562–571.  https://doi.org/10.1002/mrm.25606 CrossRefPubMedGoogle Scholar
  8. 8.
    D. L. Donoho (2006) “Compressed sensing,” IEEE Trans on Information Theory, 52(4):1289–1306Google Scholar
  9. 9.
    Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pur Appl Math, 59:1207–1223, 2006Google Scholar
  10. 10.
    Lustig M, Donoho DL, Santos JM, & Pauly JM (2008) “Compressed Sensing MRI,” IEEE Signal Processing Magazine, 25: 72–82Google Scholar
  11. 11.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195.  https://doi.org/10.1002/mrm.21391 CrossRefPubMedGoogle Scholar
  12. 12.
    Hatay GH, Yildirim M, Ozturk-Isik E (2017) Considerations in applying compressed sensing to in vivo phosphorus MR spectroscopic imaging of human brain at 3T. Med Biol Eng Comput 55(8):1303–1315.  https://doi.org/10.1007/s11517-016-1591-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Block K, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57(6):1086–1098.  https://doi.org/10.1002/mrm.21236 CrossRefPubMedGoogle Scholar
  14. 14.
    Chang CH, Yu X, Ji JX (2017, in press) Compressed sensing MRI reconstruction from 3D multichannel data using GPUs. Magn Reson Med 78(6):2265–2274.  https://doi.org/10.1002/mrm.26636 CrossRefPubMedGoogle Scholar
  15. 15.
    Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 3(5):1028–1041CrossRefGoogle Scholar
  16. 16.
    Li J, Song Y, Zhu Z, Zhao J (2017) Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries. Med Biol Eng Comput 55(5):807–822.  https://doi.org/10.1007/s11517-016-1556-z CrossRefPubMedGoogle Scholar
  17. 17.
    Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z (2014) Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal 18(6):843–856.  https://doi.org/10.1016/j.media.2013.09.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Yang J, Yang J, Liu A, Sun P (2016) A novel compressed sensing method for magnetic resonance imaging: exponential wavelet iterative shrinkage-thresholding algorithm with random shift. Int J Biomed Imaging 2016:1–10.  https://doi.org/10.1155/2016/9416435 CrossRefGoogle Scholar
  19. 19.
    Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z (2016) Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 93-104Google Scholar
  20. 20.
    Yang B, Yuan M, Ma Y, Zhang J, Zhan K (2015) Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. BMC Med Imaging 15(1):28.  https://doi.org/10.1186/s12880-015-0065-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777–4807.  https://doi.org/10.1088/0031-9155/53/17/021 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yin XX, Ng BH, Ramamohanarao K, Baghai-Wadji A, Abbott D (2012) Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error. Med Biol Eng Comput 50(9):991–1000.  https://doi.org/10.1007/s11517-012-0920-x CrossRefPubMedGoogle Scholar
  23. 23.
    Lin XX, Xia LY, Liang Y, Huang HH, Chai H. and Chan KF, (2016) Low-rank and sparse matrix decomposition based on S 1/2 and L 1/2 regularizations in dynamic MRI. In Image Processing Theory Tools and Applications (IPTA), 2016 6th International Conference on (pp. 1-6). IEEEGoogle Scholar
  24. 24.
    Xu F, Han J, Wang Y, Chen M, Chen Y, He G, Hu Y (2017) Dynamic magnetic resonance imaging via nonconvex low-rank matrix approximation. IEEE Access 5:1958–1966.  https://doi.org/10.1109/ACCESS.2017.2657645 CrossRefGoogle Scholar
  25. 25.
    Liu Q, Wang S, Liang D (2017) Sparse and dense hybrid representation via subspace modeling for dynamic MRI. Comput Med Imaging Graph 56:24–37.  https://doi.org/10.1016/j.compmedimag.2017.01.007 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang S, Liu J, Liu Q, Ying L, Liu X, Zheng H, Liang D (2016) Iterative feature refinement for accurate undersampled MR image reconstruction. Phys Med Biol 61(9):3291–3316.  https://doi.org/10.1088/0031-9155/61/9/3291 CrossRefPubMedGoogle Scholar
  27. 27.
    Kojima S, Shinohara H, Hashimoto T, Hirata M, Ueno E (2015) Iterative image reconstruction that includes a total variation regularization for radial MRI. Radiol Phys Technol 8(2):295–304.  https://doi.org/10.1007/s12194-015-0320-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Chartrand R Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14(10):707–710.2007Google Scholar
  29. 29.
    Kaleem M, Qureshi M, Omer H (2016) An adaptive algorithm for compressively sampled MR image reconstruction using projections onto l_ {p}-Ball. Appl Magn Reson 47(4):415–428.  https://doi.org/10.1007/s00723-016-0761-0 CrossRefGoogle Scholar
  30. 30.
    Ramos-Llorden G, den Dekker AJ, Sijbers J (2017) Partial discreteness: a novel prior for magnetic resonance image reconstruction. IEEE Trans Med Imaging 36(5):1041–1053.  https://doi.org/10.1109/TMI.2016.2645122 CrossRefPubMedGoogle Scholar
  31. 31.
    Luo JH, Zhu YM, Magnin I (2008) Phase correction-based singularity function analysis for partial K-space reconstruction. Magn Reson Imaging 26(6):746–753.  https://doi.org/10.1016/j.mri.2008.01.035 CrossRefPubMedGoogle Scholar
  32. 32.
    Luo J, Zhu Y, Li W, Croisille P, Magnin IE (2012) MRI reconstruction from 2D truncated k- space. J Magn Reson Imaging 35(5):1196–1120.  https://doi.org/10.1002/jmri.23538 CrossRefPubMedGoogle Scholar
  33. 33.
    Noll DC (1997) “Multishot rosette trajectories for spectrally selective MR imaging,” IEEE Trans. Medical Imaging 16(4):372–377.  https://doi.org/10.1109/42.611345 CrossRefPubMedGoogle Scholar
  34. 34.
    Schirda CV, Tanase C, Boada FE (2009) Rosette spectroscopic imaging: optimal parameters for alias-free, high sensitivity spectroscopic imaging. J Magn Reson Imaging 29(6):1375–1385.  https://doi.org/10.1002/jmri.21760 CrossRefPubMedGoogle Scholar
  35. 35.
    Moriguchi H, Duerk JL (2004) Iterative next-neighbor regridding (INNG): improved reconstruction from nonuniformly sampled K-space data using rescaled matrices. Magn Reson Med 51(2):343–352.  https://doi.org/10.1002/mrm.10692 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.China National Aeronautical Radio Electronics Research InstituteShanghaiPeople’s Republic of China
  3. 3.School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  4. 4.School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  5. 5.INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621Université LyonLyonFrance

Personalised recommendations