Advertisement

Medical & Biological Engineering & Computing

, Volume 55, Issue 12, pp 2209–2225 | Cite as

Enhanced visualization of the retinal vasculature using depth information in OCT

  • Joaquim de MouraEmail author
  • Jorge Novo
  • Pablo Charlón
  • Noelia Barreira
  • Marcos Ortega
Original Article

Abstract

Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.

Keywords

Computer-aided diagnosis Vascular structure Retinal imaging Optical Coherence Tomography 

Notes

Acknowledgements

This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

Supplementary material

(MP4 44.5 MB)

References

  1. 1.
    Alonso-Montes C, Vilarino DL, Penedo MG (2005) Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. International Workshop on Cellular Neural Networks and Their Applications :61–64Google Scholar
  2. 2.
    Calvo D, Ortega M, Penedo MG, Rouco J (2011) Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput Methods Prog Biomed 103:28–38CrossRefGoogle Scholar
  3. 3.
    Chakraborti T, Jha DK, Chowdhury AS, Jiang XY (2015) A self-adaptive matched filter for retinal blood vessel detection. Mach Vis Appl 26(1):55–68CrossRefGoogle Scholar
  4. 4.
    Chen X, Niemeijer M, Zhang L, Kyungmoo L, Abramoff MD, Sonka M (2012) Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut. IEEE Trans Med Imaging 31(8): 1521–1531CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cheng EK, Du L, Wu Y, Zhu YJ, Megalooikonomou V, Ling HB (2014) Discriminative vesvsel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792CrossRefGoogle Scholar
  6. 6.
    de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). International Journal of Retina and Vitreous 1(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    De Jong FJ, Ikram MK, Witteman JC, Hofman A, De Jong PT, Breteler MM (2007) Retinal vessel diameters and the role of inflammation in cerebrovascular disease. Annals of Neurology Journal 61(5):491–495CrossRefGoogle Scholar
  8. 8.
    Dhar R, Gupta R, Baishnab KL (2014) An analysis of canny and laplacian of gaussian image filters in regard to evaluating retinal image. Int Conference on Green Computing Communication and Electrical Engineering 31(8):1–6Google Scholar
  9. 9.
    Dougherty E (1993) Mathematical Morphology in Image ProcessingGoogle Scholar
  10. 10.
    Fathi A, Naghsh N, Reza A (2013) Blood vessels segmentation in retina: Preliminary assessment of the mathematical morphology and of the wavelet transform techniques. Biomedical Signal Processing and Control Journal 8(1):71–80CrossRefGoogle Scholar
  11. 11.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proceedings of the Medical Image Computing and Computer-Assisted Interventation (MICCAI), pp 130–137Google Scholar
  12. 12.
    Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Prog Biomed 108 (1):407–433CrossRefGoogle Scholar
  13. 13.
    Guimaraes P, Rodrigues P, Bernardes R, Serranho P (2012) 3D blood vessels segmentation from optical coherence tomography Acta OphthalmologicaGoogle Scholar
  14. 14.
    Imani E, Javidi M, Pourreza HR (2015) Improvement of retinal blood vessel detection using morphological component analysis. Comput Methods Prog Biomed 118(3):263–279CrossRefGoogle Scholar
  15. 15.
    Jiang P, Dou QS, Hu XY (2015) A supervised method for retinal image vessel segmentation by embedded learning and classification. J Intell Fuzzy Syst 29(5):2305–2315CrossRefGoogle Scholar
  16. 16.
    Klein R, Klein B, Moss S, Wong T, Sharrett A (2006) Retinal vascular caliber in persons with type 2 diabetes: the Wisconsin Epidemiological Study of Diabetic Retinopathy: XX. Ophthalmology Journal 113 (9):1488–1498CrossRefGoogle Scholar
  17. 17.
    Kovacs G, Hajdu A (2016) A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med Image Anal 29(4):24–46CrossRefPubMedGoogle Scholar
  18. 18.
    Lazar I, Hajdu A (2015) Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 66(1):209–221CrossRefPubMedGoogle Scholar
  19. 19.
    Li QL, Feng BW, Xie LP, Liang P, Zhang HS, Wang TF (2016) A Cross-Modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118CrossRefPubMedGoogle Scholar
  20. 20.
    López A, Lloret D, Serrat J, Villanueva JJ (2000) Multilocal creaseness based on the level set extrinsic curvature. Comput Vis Image Underst 77:111–144CrossRefGoogle Scholar
  21. 21.
    Mendonça AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213CrossRefPubMedGoogle Scholar
  22. 22.
    Nayak C (2013) Retinal blood vessel segmentation algorithm for diabetic retinopathy using wavelet: a survey. Int J on Recent and Innovation Trends in Comp and Comm 3(3):927–930CrossRefGoogle Scholar
  23. 23.
    Nguyen TT, Wang JJ, Sharrett AR, Islam FA, Klein R, Klein BE, Cotch MF, Wong T (2007) Relationship of retinal vascular caliber with diabetes and retinopathy: The multi-ethnic study of atherosclerosis (MESA). Diabetes Care Journal 31(3):544–549CrossRefGoogle Scholar
  24. 24.
    Niemeijer M, Garvin MK, van Ginneken B, Sonka M, Abrámoff MD (2008) Vessel segmentation in 3D spectral OCT scans of the retina SPIE 2008 proceedingsGoogle Scholar
  25. 25.
    Ortega M, Penedo MG, Rouco J, Barreira N, Carreira MJ (2009) Personal verification based on extraction and characterisation of retinal feature points. J Vis Lang Comput 20(2):80–90CrossRefGoogle Scholar
  26. 26.
    Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. Annals of Neurology Journal 206(4):319–348Google Scholar
  27. 27.
    Pilch M, Wenner Y, Strohmayr E, Preising M, et al. (2012) Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans. Biomed Opt Express 3(7):1478–1491CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83(3):902–911CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Smith W, Wang JJ, Wong TY, Rochtchina E, Klein R, Leeder SR, Mitchell P (2004) Retinal arteriolar narrowing is associated with 5-year incident severe hypertension: The Blue Mountains eye study. Hypertension Journal 44(4):442–447CrossRefGoogle Scholar
  30. 30.
    Soares J, Leandro J, Cesar R, Jelinek H, Cree M (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222CrossRefPubMedGoogle Scholar
  31. 31.
    Staal J, Abramoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefPubMedGoogle Scholar
  32. 32.
    Sun C, Liew G, Wang JJ, Mitchell P, Saw SM, Aung T, Tai ES, Wong T (2008) Retinal vascular caliber, blood pressure, and cardiovascular risk factors in an Asian Population: The Singapore Malay eye study. Investigative Opthalmology and Visual Science Journal 49(5):1784–1790CrossRefGoogle Scholar
  33. 33.
    Vega R, Sanchez-Ante G, Falcon-Morales LE, Sossa H, Guevara E (2015) Retinal vessel extraction using Lattice Neural Networks with dendritic processing. Comput Biol Med 58(1):20–30CrossRefPubMedGoogle Scholar
  34. 34.
    Wink O, Niessen WJ, Viergever MA (2004) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Med Imaging 23(1):130–133CrossRefPubMedGoogle Scholar
  35. 35.
    Wong T (2006) Quantitative retinal venular caliber and risk of cardiovascular disease in older persons. Archives of Internal Medicine Journal 166(21):2388–2394CrossRefGoogle Scholar
  36. 36.
    Wu J, Gerendas B, Waldstein S, Langs G, et al. (2014) Stable registration of pathological 3d-OCT scans using retinal vessels. In: 2014 Proceedings of Ophthalmic Medical Image AnalysisGoogle Scholar
  37. 37.
    Xiaolin S, Zhenhua C, Chuang M, Yonghang J, Duan ZY, Wang LG, Chang SH (2010) Retinal vessel tracking using bilateral filter based on canny method. In: International Conference on Audio, Language and Image Processing, pp 1678–1682Google Scholar
  38. 38.
    Xiaoyi J, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137CrossRefGoogle Scholar
  39. 39.
    Xu J, Tolliver DA, Ishikawa H, Wollstein G, Schuman JS (2009) 3D OCT retinal vessel segmentation based on boosting learning. Med Image Anal 25(11):179–182Google Scholar
  40. 40.
    Xu X, Niemeijer M, Song Q, Garvin MK, Reinhardt JM, Abramoff MD (2011) Retinal vessel width measurements based on a graph-theoretic method. IEEE International Symposium on Biomedical Imaging: From Nano to Macro :641–644Google Scholar
  41. 41.
    Yin BJ, Li HT, Sheng B, Hou XH, Chen Y, Wu W, Li P, Shen RM, Bao YQ, Jia WP (2015) Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Med Image Anal 26 (1):232–242CrossRefPubMedGoogle Scholar
  42. 42.
    Yong Y, Yuan Z, Shuying H, Nini R, Zhijun F, Jucheng Y (2012) Effective combined algorithms for retinal blood vessels extraction. Advances in Information Sciences and Service Sciences Journal 4(3):263–269CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Hsu W, Lee ML (2008) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. Journal of Signal Processing Systems 55(1):103– 112Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  • Joaquim de Moura
    • 1
    Email author
  • Jorge Novo
    • 1
  • Pablo Charlón
    • 2
  • Noelia Barreira
    • 1
  • Marcos Ortega
    • 1
  1. 1.Department of Computer ScienceUniversity of A CoruñaA CoruñaSpain
  2. 2.Instituto Oftalmológico Victoria de RojasA CoruñaSpain

Personalised recommendations