Medical & Biological Engineering & Computing

, Volume 55, Issue 11, pp 1915–1926 | Cite as

Use of phase-locking value in sensorimotor rhythm-based brain–computer interface: zero-phase coupling and effects of spatial filters

  • Wenjuan JianEmail author
  • Minyou Chen
  • Dennis J. McFarland
Original Article


Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain–computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10–15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.


Brain–computer interface (BCI) Phase-locking value (PLV) Spatial filters Zero phase 



This work was supported in part by the National Institutes of Health (NIH) (Grants HD30146 46) (NCMRR/NICHD), EB00856 (NIBIB &NINDS), National “111” Project (B08036) and in part by the China Scholarship Council. The authors would like to thank Jonathan Carp and Li Zhang for their helpful comments on an earlier version of this paper.

Supplementary material

11517_2017_1641_MOESM1_ESM.doc (142 kb)
Supplementary material 1 (DOC 142 kb)


  1. 1.
    Andrew C, Pfurtscheller G (1996) Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98:144–148. doi: 10.1016/0013-4694(95)00228-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Andrew C, Pfurtscheller G (1997) On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett 222:103–106. doi: 10.1016/S0304-3940(97)13358-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Andrew C, Pfurtscheller G (1996) Dependence of coherence measurements on EEG derivation type. Med Biol Eng Comput 34:232–238. doi: 10.1007/BF02520079 CrossRefPubMedGoogle Scholar
  4. 4.
    Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180. doi: 10.1016/j.conb.2014.11.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Bayraktaroglu Z, von Carlowitz-Ghori K, Curio G, Nikulin VV (2013) It is not all about phase: amplitude dynamics in corticomuscular interactions. NeuroImage 64:496–504. doi: 10.1016/j.neuroimage.2012.08.069 CrossRefPubMedGoogle Scholar
  6. 6.
    Brunner C, Scherer R, Graimann B, Supp G, Pfurtscheller G (2006) Online control of a brain–computer interface using phase synchronization. IEEE Trans Biomed Eng 53:2501–2506. doi: 10.1109/TBME.2006.881775 CrossRefPubMedGoogle Scholar
  7. 7.
    Celka P (2007) Statistical analysis of the phase-locking value. IEEE Signal Process Lett 14:577–580. doi: 10.1109/LSP.2007.896142 CrossRefGoogle Scholar
  8. 8.
    Chawla D, Friston KJ, Lumer ED (2001) Zero-lag synchronous dynamics in triplets of interconnected cortical areas. Neural Netw 14:727–735. doi: 10.1016/S0893-6080(01)00043-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Daffertshofer A, van Wijk BCM (2011) On the influence of amplitude on the connectivity between phases. Front Neuroinformatics 5:6. doi: 10.3389/fninf.2011.00006 CrossRefGoogle Scholar
  10. 10.
    Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114. doi: 10.1109/LSP.2003.821662 CrossRefGoogle Scholar
  11. 11.
    Florian G, Andrew C, Pfurtscheller G (1998) Do changes in coherence always reflect changes in functional coupling? Electroencephalogr Clin Neurophysiol 106:87–91. doi: 10.1016/S0013-4694(97)00105-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Gollo LL, Mirasso C, Sporns O, Breakspear M (2014) Mechanisms of zero-lag synchronization in cortical motifs. PLoS Comput Biol 10:e1003548. doi: 10.1371/journal.pcbi.1003548 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Math Phys Eng Sci 454:903–995. doi: 10.1098/rspa.1998.0193 CrossRefGoogle Scholar
  14. 14.
    Krusienski DJ (2009) A method for visualizing independent spatio-temporal patterns of brain activity. EURASIP J Adv Signal Process 2009:948961. doi: 10.1155/2009/948961 CrossRefGoogle Scholar
  15. 15.
    Krusienski DJ, McFarland DJ, Wolpaw JR (2012) Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain–computer interface. Brain Res Bull 87:130–134. doi: 10.1016/j.brainresbull.2011.09.019 CrossRefPubMedGoogle Scholar
  16. 16.
    Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208CrossRefPubMedGoogle Scholar
  17. 17.
    Le Van Quyen M, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111:83–98. doi: 10.1016/S0165-0270(01)00372-7 CrossRefGoogle Scholar
  18. 18.
    Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M (1997) Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol Potentials Sect 104:199–206. doi: 10.1016/S0168-5597(96)96051-7 CrossRefGoogle Scholar
  19. 19.
    Lou B, Hong B, Gao X, Gao S (2008) Bipolar electrode selection for a motor imagery based brain–computer interface. J Neural Eng 5:342. doi: 10.1088/1741-2560/5/3/007 CrossRefPubMedGoogle Scholar
  20. 20.
    McFarland DJ (2015) The advantages of the surface Laplacian in brain–computer interface research. Int J Psychophysiol 97:271–276. doi: 10.1016/j.ijpsycho.2014.07.009 CrossRefPubMedGoogle Scholar
  21. 21.
    McFarland DJ, Lefkowicz AT, Wolpaw JR (1997) Design and operation of an EEG-based brain–computer interface with digital signal processing technology. Behav Res Methods Instrum Comput 29:337–345. doi: 10.3758/BF03200585 CrossRefGoogle Scholar
  22. 22.
    McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394. doi: 10.1016/S0013-4694(97)00022-2 CrossRefPubMedGoogle Scholar
  23. 23.
    McFarland DJ, Sarnacki WA, Vaughan TM, Wolpaw JR (2005) Brain–computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol 116:56–62. doi: 10.1016/j.clinph.2004.07.004 CrossRefPubMedGoogle Scholar
  24. 24.
    McFarland DJ, Wolpaw JR (2003) EEG-based communication and control: speed–accuracy relationships. Appl Psychophysiol Biofeedback 28:217–231. doi: 10.1023/A:1024685214655 CrossRefPubMedGoogle Scholar
  25. 25.
    Miskovic V, Schmidt LA, Boyle M, Saigal S (2009) Regional electroencephalogram (EEG) spectral power and hemispheric coherence in young adults born at extremely low birth weight. Clin Neurophysiol 120:231–238. doi: 10.1016/j.clinph.2008.11.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Moll K, Hasko S, Groth K, Bartling J, Schulte-Körne G (2016) Letter-sound processing deficits in children with developmental dyslexia: an ERP study. Clin Neurophysiol 127:1989–2000. doi: 10.1016/j.clinph.2016.01.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Mylonas DS, Siettos CI, Evdokimidis I, Papanicolaou AC, Smyrnis N (2015) Modular patterns of phase desynchronization networks during a simple visuomotor task. Brain Topogr 29:118–129. doi: 10.1007/s10548-015-0451-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307. doi: 10.1016/j.clinph.2004.04.029 CrossRefPubMedGoogle Scholar
  29. 29.
    Nunez PL, Silberstein RB, Shi Z, Carpenter MR, Srinivasan R, Tucker DM, Doran SM, Cadusch PJ, Wijesinghe RS (1999) EEG coherency II: experimental comparisons of multiple measures. Clin Neurophysiol 110:469–486. doi: 10.1016/S1388-2457(98)00043-1 CrossRefPubMedGoogle Scholar
  30. 30.
    Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency: i: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515. doi: 10.1016/S0013-4694(97)00066-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Peraza LR, Asghar AUR, Green G, Halliday DM (2012) Volume conduction effects in brain network inference from electroencephalographic recordings using phase lag index. J Neurosci Methods 207:189–199. doi: 10.1016/j.jneumeth.2012.04.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. doi: 10.1016/S1388-2457(99)00141-8
  33. 33.
    Rappelsberger P, Pfurtscheller G, Filz O (1994) Calculation of event-related coherence—a new method to study short-lasting coupling between brain areas. Brain Topogr 7:121–127. doi: 10.1007/BF01186770 CrossRefPubMedGoogle Scholar
  34. 34.
    Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043. doi: 10.1109/TBME.2004.827072 CrossRefPubMedGoogle Scholar
  35. 35.
    Sharbrough F, Chatrian CE, Lesser RP, Luders H, Nuwer M and Picton TW (1991) American electroencephalographic society guidelines for standard electrode position nomenclature. J Clin Neurophysiol 8:200–202Google Scholar
  36. 36.
    Sheikh H, McFarland DJ, Sarnacki WA, Wolpaw JR (2003) Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans. Neurosci Lett 345:89–92. doi: 10.1016/S0304-3940(03)00470-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Simpson EV, Ideker RE, Cabo C, Yabe S, Zhou X, Melnick SB, Smith WM (1993) Evaluation of an automatic cardiac activation detector for bipolar electrograms. Med Biol Eng Comput 31:118–128. doi: 10.1007/BF02446669 CrossRefPubMedGoogle Scholar
  38. 38.
    Spiegler A, Graimann B, Pfurtscheller G (2004) Phase coupling between different motor areas during tongue-movement imagery. Neurosci Lett 369:50–54. doi: 10.1016/j.neulet.2004.07.054 CrossRefPubMedGoogle Scholar
  39. 39.
    Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193. doi: 10.1002/hbm.20346 CrossRefPubMedGoogle Scholar
  40. 40.
    Tenke CE, Kayser J (2012) Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol 123:2328–2345. doi: 10.1016/j.clinph.2012.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tenke CE, Kayser J (2015) Surface Laplacians (SL) and phase properties of EEG rhythms: simulated generators in a volume-conduction model. Int J Psychophysiol 97:285–298. doi: 10.1016/j.ijpsycho.2015.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vollebregt MA, Zumer JM, ter Huurne N, Buitelaar JK, Jensen O (2016) Posterior alpha oscillations reflect attentional problems in boys with attention deficit hyperactivity disorder. Clin Neurophysiol 127:2182–2191. doi: 10.1016/j.clinph.2016.01.021 CrossRefPubMedGoogle Scholar
  43. 43.
    Wang Y, Hong B, Gao X, Gao S (2006) Phase synchrony measurement in motor cortex for classifying single-trial EEG during motor imagery. IEEE, pp 75–78Google Scholar
  44. 44.
    Wang Y, Hong B, Gao X, Gao S (2007) Design of electrode layout for motor imagery based brain–computer interface. Electron Lett 43:557. doi: 10.1049/el:20070563 CrossRefGoogle Scholar
  45. 45.
    Wei Q, Wang Y, Gao X, Gao S (2007) Amplitude and phase coupling measures for feature extraction in an EEG-based brain–computer interface. J Neural Eng 4:120. doi: 10.1088/1741-2560/4/2/012 CrossRefPubMedGoogle Scholar
  46. 46.
    Witham CL, Wang M, Baker SN (2007) Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex. Eur J Neurosci 26:2677–2686. doi: 10.1111/j.1460-9568.2007.05890.x CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791. doi: 10.1016/S1388-2457(02)00057-3 CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou Z, Wan B, Ming D, Qi H (2010) A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action. J Neural Eng 7:46008. doi: 10.1088/1741-2560/7/4/046008 CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical EngineeringChongqing UniversityChongqingChina
  2. 2.National Center for Adaptive Neurotechnologies, Wadsworth CenterNew York State Department of HealthAlbanyUSA

Personalised recommendations