Medical & Biological Engineering & Computing

, Volume 55, Issue 11, pp 1975–1987 | Cite as

A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout

  • Johannes PortEmail author
  • Ziran Tao
  • Annika Junger
  • Christoph Joppek
  • Philipp Tempel
  • Kim Husemann
  • Florian Singer
  • Philipp Latzin
  • Sophie Yammine
  • Joachim H. Nagel
  • Martin Kohlhäufl
Original Article


For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF6) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.


Small airway diseases Double-tracer gas single-breath washout (DTG-SBW) Signal reconstruction OLS 


  1. 1.
    Abbas C, Singer F, Yammine S, Casaulta C, Latzin P (2013) Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis. J Cyst Fibros 12(6):567–574CrossRefPubMedGoogle Scholar
  2. 2.
    Boeck L, Gensmer A, Nyilas S, Stieltjes B, Re TJ, Tamm M, Latzin P, Stolz D (2016) Single-breath washout tests to assess small airway disease in COPD. Chest 150:1091–1100CrossRefPubMedGoogle Scholar
  3. 3.
    Burgel PR (2011) The role of small airways in obstructive airway diseases. Eur Respir Rev 20(119):23–33CrossRefPubMedGoogle Scholar
  4. 4.
    Contoli M, Kraft M, Hamid Q, Bousquet J, Rabe KF, Fabbri LM, Papi A (2012) Do small airway abnormalities characterize asthma phenotypes? In search of proof. Clin Exp Allergy 42(8):1150–1160CrossRefPubMedGoogle Scholar
  5. 5.
    Diong B, Rajagiri A, Goldman M, Nazeran H (2009) The augmented RIC model of the human respiratory system. Med Biol Eng Comput 47(4):395–404CrossRefPubMedGoogle Scholar
  6. 6.
    Granstedt F, Folke M, Ekström M, Hök B, Bäcklund Y (2005) Modelling of an electroacoustic gas sensor. Sens Actuators B Chem 104(2):308–311CrossRefGoogle Scholar
  7. 7.
    Green K, Buchvald FF, Marthin JK, Hanel B, Gustafsson PM, Nielsen KG (2012) Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 67(1):49–53CrossRefPubMedGoogle Scholar
  8. 8.
    Gustafsson PM (2007) Peripheral airway involvement in CF and asthma compared by inert gas washout. Pediatr Pulmonol 42(2):168–176CrossRefPubMedGoogle Scholar
  9. 9.
    Gustafsson PM, Ljungberg HK, Kjellman B (2003) Peripheral airway involvement in asthma assessed by single-breath SF6 and He washout. Eur Respir J 21(6):1033–1039CrossRefPubMedGoogle Scholar
  10. 10.
    Gustafsson PM, Robinson PD, Lindblad A, Oberli D (2016) Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment. J Appl Physiol 121:1087–1097CrossRefPubMedGoogle Scholar
  11. 11.
    Hamid Q (2012) Pathogenesis of small airways in asthma. Respiration 84(1):4–11CrossRefPubMedGoogle Scholar
  12. 12.
    Hansen J (2008) Assessing small airways disease. Eur Respir J 32(5):1410 (author reply 1410–1410; author reply 1411)CrossRefPubMedGoogle Scholar
  13. 13.
    Husemann K, Berg N, Engel J, Port J, Joppek C, Tao Z, Singer F, Schulz H, Kohlhäufl M (2014) Double tracer gas single-breath washout: reproducibility in healthy subjects and COPD. Eur Respir J 44(5):1210–1222CrossRefPubMedGoogle Scholar
  14. 14.
    Husemann K, Haidl P, Kroegel C, Voshaar T, Kohlhäufl M (2012) Lung function diagnostics for the small airways. Pneumologie 66(5):283–289CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly VJ, Brown NJ, King GG, Thompson BR (2010) A method to determine in vivo, specific airway compliance, in humans. Med Biol Eng Comput 48(5):489–496CrossRefPubMedGoogle Scholar
  16. 16.
    Latzin P, Thamrin C, Kraemer R (2008) Ventilation inhomogeneities assessed by the multibreath washout (MBW) technique. Thorax 63(2):98–99CrossRefPubMedGoogle Scholar
  17. 17.
    Lombardi E, Hall GL, Calogero C (2013) Pulmonary function testing in infants and preschool children. In: Eber E, Midulla F (eds) ERS handbook of paediatric respiratory medicine. European Respiratory Society, LausanneGoogle Scholar
  18. 18.
    Nyilas S, Singer F, Kumar N, Yammine S, Meier-Girard D, Koerner-Rettberg C, Casaulta C, Frey U, Latzin P (2016) Physiological phenotyping of pediatric chronic obstructive airway diseases. J Appl Physiol 121:324–332CrossRefPubMedGoogle Scholar
  19. 19.
    O’Rourke C, Klyuzhin I, Park JS, Pollack GH (2011) Unexpected water flow through Nafion-tube punctures. Phys Rev E Stat Nonlin Soft Matter Phys 83(5 Pt 2):056,305CrossRefGoogle Scholar
  20. 20.
    Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, Thamrin C, Arets HGM, Aurora P, Fuchs SI, King GG, Lum S, Macleod K, Paiva M, Pillow JJ, Ranganathan S, Ratjen F, Singer F, Sonnappa S, Stocks J, Subbarao P, Thompson BR, Gustafsson PM (2013) Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J 41(3):507–522CrossRefPubMedGoogle Scholar
  21. 21.
    Rohani M, Pollack GH (2013) Flow through horizontal tubes submerged in water in the absence of a pressure gradient: mechanistic considerations. Langmuir 29(22):6556–6561CrossRefPubMedGoogle Scholar
  22. 22.
    Shaw RJ, Djukanovic R, Tashkin DP, Millar AB, du Bois RM, Orr PA (2002) The role of small airways in lung disease. Respir Med 96(2):67–80CrossRefPubMedGoogle Scholar
  23. 23.
    Shi Y, Aledia AS, Tatavoosian AV, Vijayalakshmi S, Galant SP, George SC (2012) Relating small airways to asthma control by using impulse oscillometry in children. J Allergy Clin Immunol 129(3):671–678CrossRefPubMedGoogle Scholar
  24. 24.
    Singer F, Abbas C, Yammine S, Casaulta C, Frey U, Latzin P (2014) Abnormal small airways function in children with mild asthma. Chest 145(3):492–499CrossRefPubMedGoogle Scholar
  25. 25.
    Singer F, Houltz B, Latzin P, Robinson P, Gustafsson P (2012) A realistic validation study of a new nitrogen multiple-breath washout system. PLoS ONE 7(4):e36,083CrossRefGoogle Scholar
  26. 26.
    Singer F, Kieninger E, Abbas C, Yammine S, Fuchs O, Proietti E, Regamey N, Casaulta C, Frey U, Latzin P (2013) Practicability of nitrogen multiple-breath practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr Pulmonol 48(8):739–746CrossRefPubMedGoogle Scholar
  27. 27.
    Singer F, Stern G, Thamrin C, Abbas C, Casaulta C, Frey U, Latzin P (2013) A new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease. Eur Respir J 41(2):339–345CrossRefPubMedGoogle Scholar
  28. 28.
    Singer F, Stern G, Thamrin C, Fuchs O, Riedel T, Gustafsson P, Frey U, Latzin P (2011) Tidal volume single breath washout of two tracer gases—a practical and promising lung function test. PLoS ONE 6(3):e17,588CrossRefGoogle Scholar
  29. 29.
    Tøien Ø (2013) Automated open flow respirometry in continuous and long-term measurements: design and principles. J Appl Physiol 114(8):1094–1107CrossRefPubMedGoogle Scholar
  30. 30.
    Tulic MK, Christodoulopoulos P, Hamid Q (2001) Small airway inflammation in asthma. Respir Res 2(6):333–339CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ueda T, Niimi A, Matsumoto H, Takemura M, Hirai T, Yamaguchi M, Matsuoka H, Jinnai M, Muro S, Chin K, Mishima M (2006) Role of small airways in asthma: investigation using high-resolution computed tomography. J Allergy Clin Immunol 118(5):1019–1025CrossRefPubMedGoogle Scholar
  32. 32.
    Usmani OS, Barnes PJ (2012) Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med 44(2):146–156CrossRefPubMedGoogle Scholar
  33. 33.
    van den Berge M, ten Hacken NHT, Cohen J, Douma WR, Postma DS (2011) Small airway disease in asthma and COPD: clinical implications. Chest 139(2):412–423CrossRefPubMedGoogle Scholar
  34. 34.
    Van Muylem A, Baran D (2000) Overall and peripheral inhomogeneity of ventilation in patients with stable cystic fibrosis. Pediatr Pulmonol 30(1):3–9CrossRefPubMedGoogle Scholar
  35. 35.
    Veiga J, Lopes AJ, Jansen JM, Melo PL (2012) Fluctuation analysis of respiratory impedance waveform in asthmatic patients: effect of airway obstruction. Med Biol Eng Comput 50(12):1249–1259CrossRefPubMedGoogle Scholar
  36. 36.
    Verbanck S, Paiva M (2015) Dual gas techniques for peripheral airway function: diffusing the issues. Eur Respir J 45(5):1491–1494CrossRefPubMedGoogle Scholar
  37. 37.
    Yammine S, Latzin P (2013) Single- and multible-breath washout techniques. In: Eber E, Midulla F (eds) ERS handbook of paediatric respiratory medicine. European Respiratory Society, LausanneGoogle Scholar
  38. 38.
    Yammine S, Nyilas S, Casaulta C, Schibli S, Latzin P, Sokollik C (2016) Function and ventilation of large and small airways in children and adolescents with inflammatory bowel disease. Inflamm Bowel Dis 22:1915–1922CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  • Johannes Port
    • 1
    Email author
  • Ziran Tao
    • 1
  • Annika Junger
    • 1
  • Christoph Joppek
    • 1
  • Philipp Tempel
    • 1
  • Kim Husemann
    • 2
    • 5
  • Florian Singer
    • 3
  • Philipp Latzin
    • 4
  • Sophie Yammine
    • 4
  • Joachim H. Nagel
    • 1
  • Martin Kohlhäufl
    • 2
  1. 1.Institut für Biomedizinische TechnikUniversität StuttgartStuttgartGermany
  2. 2.Klinik Schillerhöhe, Zentrum für Pneumologie und ThoraxchirurgieRobert-Bosch-HospitalGerlingenGermany
  3. 3.University Children’s Hospital ZurichZurichSwitzerland
  4. 4.University Children’s Hospital BaselBaselSwitzerland
  5. 5.Internistische Facharztpraxis für Pneumologie, Allergologie, Thoraxonkologie, Bronchoskopie und SchlafmedizinMVZ Klinikum Kempten GmbHKemptenGermany

Personalised recommendations