Medical & Biological Engineering & Computing

, Volume 55, Issue 10, pp 1799–1807 | Cite as

Biomechanical evaluation of reconstruction plates with locking, nonlocking, and hybrid screws configurations in calcaneal fracture: a finite element model study

  • Ching-Hsuan Chen
  • Chinghua Hung
  • Yu-Chun Hsu
  • Chen-Sheng Chen
  • Chao-Ching Chiang
Original Article

Abstract

Calcaneal fractures are the most common fractures of the tarsal bones. The stability of fixation is an important factor for successful reconstruction of calcaneal fractures. The purpose of this study was to analyze the biomechanical influence of plate fixation with different combinations of locking and nonlocking screws during early weight-bearing phase. A three-dimensional FE foot model was established using ANSYS software, which comprised bones, cartilages, plantar fascia, and soft tissue. Calcaneal plate was fixed with whole locking (WLS), whole nonlocking (WNS), and hybrid screw configurations for FE analysis. The WNS generated a 6.1° and 2.2° Bohler angle decrease compared with the intact model and WLS (WNS: 18.9; WLS: 21.1; intact: 25.0°). Some hybrid screw configurations (Bohler angle: 21.5° and 21.2°) generated stability similar to WLS. The FE results showed that the fragments at the posterior facet and the posterior tuberosity sustained more stress. This study recommends that the hybrid screw configuration with at least four locking screws, two at the posterior facet fragment and two at the posterior tuberosity fragment, is the optimal choice for the fixation of Sanders type IIB calcaneal fractures.

Keywords

Biomechanics Calcaneal fracture Sanders IIB Finite element analysis Locking plate Nonlocking plate Hybrid configuration 

References

  1. 1.
    Blake MH, Owen JR, Sanford TS, Wayne JS, Adelaar RS (2011) Biomechanical evaluation of a locking and nonlocking reconstruction plate in an osteoporotic calcaneal fracture model. Foot Ankle Int 32:432–436CrossRefPubMedGoogle Scholar
  2. 2.
    Brilakis E, Kaselouris E, Xypnitos F, Provatidis CG, Efstathopoulos N (2012) Effects of foot posture on fifth metatarsal fracture healing: a finite element study. J Foot Ankle Surg 51:720–728CrossRefPubMedGoogle Scholar
  3. 3.
    Chapman J, Harrington R, Lee K, Anderson P, Tencer A, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398CrossRefPubMedGoogle Scholar
  4. 4.
    Chen K, Zhang H, Wang G, Cheng Y, Qian Z, Yang H (2014) Comparison of nonlocking plates and locking plates for intraarticular calcaneal fracture. Foot Ankle Int 35:1298–1302CrossRefPubMedGoogle Scholar
  5. 5.
    Chen W-M, Lee T, Lee PV-S, Lee JW, Lee S-J (2010) Effects of internal stress concentrations in plantar soft-tissue—a preliminary three-dimensional finite element analysis. Med Eng Phys 32:324–331CrossRefPubMedGoogle Scholar
  6. 6.
    Cheung JT-M, An K-N, Zhang M (2006) Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int 27:125–132CrossRefPubMedGoogle Scholar
  7. 7.
    Coughlin MJ, Mann RA, Saltzman CL, Anderson RB (2007) Surgery of the foot and ankle. Mosby Inc, Philadelphia, PAGoogle Scholar
  8. 8.
    Hirschmüller A, Konstantinidis L, Baur H, Müller S, Mehlhorn A, Kontermann J, Grosse U, Südkamp N, Helwig P (2011) Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome? Injury 42:1135–1143CrossRefPubMedGoogle Scholar
  9. 9.
    Hsiao H, Guan J, Weatherly M (2002) Accuracy and precision of two in-shoe pressure measurement systems. Ergonomics 45:537–555CrossRefPubMedGoogle Scholar
  10. 10.
    Hsu Y-C, Gung Y-W, Shih S-L, Feng C-K, Wei S-H, C-h Yu, Chen C-S (2008) Using an optimization approach to design an insole for lowering plantar fascia stress—a finite element study. Ann Biomed Eng 36:1345–1352CrossRefPubMedGoogle Scholar
  11. 11.
    Hyer CF, Atway S, Berlet GC, Lee TH (2010) Early weight bearing of calcaneal fractures fixated with locked plates: a radiographic review. Foot Ankle Spec 3:320–323. doi:10.1177/1938640010374121 CrossRefPubMedGoogle Scholar
  12. 12.
    Illert T, Rammelt S, Drewes T, Grass R, Zwipp H (2011) Stability of locking and non-locking plates in an osteoporotic calcaneal fracture model. Foot Ankle Int 32:307–313CrossRefPubMedGoogle Scholar
  13. 13.
    Isvilanonda V, Dengler E, Iaquinto JM, Sangeorzan BJ, Ledoux WR (2012) Finite element analysis of the foot: model validation and comparison between two common treatments of the clawed hallux deformity. Clin Biomech 27:837–844CrossRefGoogle Scholar
  14. 14.
    Jastifer JR (2014) Topical review locking plate technology in foot and ankle surgery. Foot Ankle Int 35(5):512–518. doi:10.1177/1071100714523274 CrossRefPubMedGoogle Scholar
  15. 15.
    Kienast B, Gille J, Queitsch C, Kaiser M, Thietje R, Juergens C, Schulz A (2009) Early weight bearing of calcaneal fractures treated by intraoperative 3D-fluoroscopy and locked-screw plate fixation. Open Orthop J 3:69CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lemmon D, Shiang T, Hashmi A, Ulbrecht JS, Cavanagh PR (1997) The effect of insoles in therapeutic footwear—a finite element approach. J Biomech 30:615–620CrossRefPubMedGoogle Scholar
  17. 17.
    Nakamura S, Crowninshield R, Cooper R (1980) An analysis of soft tissue loading in the foot—a preliminary report. Bull Prosthet Res 10:27–34Google Scholar
  18. 18.
    Pang Q-j YuX, Z-h Guo (2014) The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: a finite element analysis. Pak J Med Sci 30:1099PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pendergast M, Rusovici R (2015) A finite element parametric study of clavicle fixation plates. Int J Numer Methods Biomed Eng 31(6):e02710CrossRefGoogle Scholar
  20. 20.
    Redfern DJ, Oliveira ML, Campbell JT, Belkoff SM (2006) A biomechanical comparison of locking and nonlocking plates for the fixation of calcaneal fractures. Foot Ankle Int 27:196–201CrossRefPubMedGoogle Scholar
  21. 21.
    Richter M, Gosling T, Zech S, Allami M, Geerling J, Droste P, Krettek C (2005) A comparison of plates with and without locking screws in a calcaneal fracture model. Foot Ankle Int 26:309–319CrossRefPubMedGoogle Scholar
  22. 22.
    Sangeorzan BJ, Ananthakrishnan D, Tencer AF (1995) Contact characteristics of the subtalar joint after a simulated calcaneus fracture. J Orthop Trauma 9:257–258CrossRefGoogle Scholar
  23. 23.
    Schepers T, van Lieshout E, Van Ginhoven T, Heetveld M, Patka P (2008) Current concepts in the treatment of intra-articular calcaneal fractures: results of a nationwide survey. Int Orthop 32:711–715CrossRefPubMedGoogle Scholar
  24. 24.
    Siegler S, Block J, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle Int 8:234–242CrossRefGoogle Scholar
  25. 25.
    Simkin A (1982) Structural analysis of the human foot in standing posture. Tel-Aviv University, Tel-AvivGoogle Scholar
  26. 26.
    Stoffel K, Booth G, Rohrl SM, Kuster M (2007) A comparison of conventional versus locking plates in intraarticular calcaneus fractures: a biomechanical study in human cadavers. Clin Biomech 22:100–105CrossRefGoogle Scholar
  27. 27.
    Sun P-C, Shih S-L, Chen Y-L, Hsu Y-C, Yang R-C, Chen C-S (2012) Biomechanical analysis of foot with different foot arch heights: a finite element analysis. Comput Methods Biomech Biomedi Eng 15:563–569CrossRefGoogle Scholar
  28. 28.
    Terrier A, Kochbeck S, Merlini F, Gortchacow M, Pioletti DP, Farron A (2010) Tightening force and torque of nonlocking screws in a reverse shoulder prosthesis. Clin Biomech 25:517–522CrossRefGoogle Scholar
  29. 29.
    Wang Y, Li Z, Zhang M (2014) Biomechanical study of tarsometatarsal joint fusion using finite element analysis. Med Eng Phys 36:1394–1400CrossRefPubMedGoogle Scholar
  30. 30.
    Wright D, Rennels D (1964) A study of the elastic properties of plantar fascia. J Bone Joint Surg Am 46:482–492CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2017

Authors and Affiliations

  • Ching-Hsuan Chen
    • 1
  • Chinghua Hung
    • 1
  • Yu-Chun Hsu
    • 2
  • Chen-Sheng Chen
    • 3
  • Chao-Ching Chiang
    • 4
    • 5
  1. 1.Department of Mechanical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.College of Medicine and Engineering, Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Physical Therapy and Assistive TechnologyNational Yang-Ming UniversityTaipeiTaiwan
  4. 4.Division of Orthopaedic Trauma, Department of Orthopaedics and TraumatologyTaipei Veterans General HospitalTaipeiTaiwan
  5. 5.Department of Surgery, School of MedicineNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations