Medical & Biological Engineering & Computing

, Volume 55, Issue 8, pp 1163–1175 | Cite as

Cerebrovascular pattern improved by ozone autohemotherapy: an entropy-based study on multiple sclerosis patients

  • Filippo MolinariEmail author
  • Daniele Rimini
  • William Liboni
  • U. Rajendra Acharya
  • Marianno Franzini
  • Sergio Pandolfi
  • Giovanni Ricevuti
  • Francesco Vaiano
  • Luigi Valdenassi
  • Vincenzo Simonetti
Original Article


Ozone major autohemotherapy is effective in reducing the symptoms of multiple sclerosis (MS) patients, but its effects on brain are still not clear. In this work, we have monitored the changes in the cerebrovascular pattern of MS patients and normal subjects during major ozone autohemotherapy by using near-infrared spectroscopy (NIRS) as functional and vascular technique. NIRS signals are analyzed using a combination of time, time–frequency analysis and nonlinear analysis of intrinsic mode function signals obtained from empirical mode decomposition technique. Our results show that there is an improvement in the cerebrovascular pattern of all subjects indicated by increasing the entropy of the NIRS signals. Hence, we can conclude that the ozone therapy increases the brain metabolism and helps to recover from the lower activity levels which is predominant in MS patients.


Ozone autohemotherapy Near-infrared spectroscopy MANOVA Multiple sclerosis Time–frequency Entropy Empirical mode decomposition Cerebrovascular pattern 



Part of the study was founded by the Scientific Society of Oxygen Ozone Therapy (SIOOT).


  1. 1.
    Acharya UR, Faust O, Kannathal N et al (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 80:37–45. doi: 10.1016/j.cmpb.2005.06.011 CrossRefGoogle Scholar
  2. 2.
    Acharya UR, Chua EC-P, Chua KC et al (2010) Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 20:509–521. doi: 10.1142/S0129065710002589 CrossRefPubMedGoogle Scholar
  3. 3.
    Acharya UR, Molinari F, Sree SV et al (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7:401–408. doi: 10.1016/j.bspc.2011.07.007 CrossRefGoogle Scholar
  4. 4.
    Acharya UR, Sree SV, Ang PCA et al (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22:1250002. doi: 10.1142/S0129065712500025 CrossRefPubMedGoogle Scholar
  5. 5.
    Arnold S (2012) The power of life-cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12:46–56. doi: 10.1016/j.mito.2011.05.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Barry DT (1992) Fast calculation of the Choi–Williams time–frequency distribution. IEEE Trans Signal Process 40:450–455. doi: 10.1109/78.124957 CrossRefGoogle Scholar
  7. 7.
    Bocci V, Zanardi I, Travagli V (2011) Ozone: a new therapeutic agent in vascular diseases. Am J Cardiovasc Drugs 11:73–82. doi: 10.2165/11539890-000000000-00000 CrossRefPubMedGoogle Scholar
  8. 8.
    Broadwater L, Pandit A, Clements R et al (2011) Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta Mol Basis Dis 1812:630–641. doi: 10.1016/j.bbadis.2011.01.012 CrossRefGoogle Scholar
  9. 9.
    Canova D, Roatta S, Bosone D, Micieli G (2011) Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests. J Appl Physiol 110:1646–1655. doi: 10.1152/japplphysiol.00003.2011 CrossRefPubMedGoogle Scholar
  10. 10.
    Chen H, Xing B, Liu X et al (2008) Ozone oxidative preconditioning inhibits inflammation and apoptosis in a rat model of renal ischemia/reperfusion injury. Eur J Pharmacol 581:306–314. doi: 10.1016/j.ejphar.2007.11.050 CrossRefPubMedGoogle Scholar
  11. 11.
    Clavo B, Pérez JL, López L et al (2004) Ozone therapy for tumor oxygenation: a pilot study. Evidence-based Complement Altern Med 1:93–98. doi: 10.1093/ecam/neh009 CrossRefGoogle Scholar
  12. 12.
    Dake MD (2012) Chronic cerebrospinal venous insufficiency and multiple sclerosis: history and background. Tech Vasc Interv Radiol 15:94–100. doi: 10.1053/j.tvir.2012.02.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Das KC, Muniyappa H (2013) Age-dependent mitochondrial energy dynamics in the mice heart: role of superoxide dismutase-2. Exp Gerontol 48:947–959. doi: 10.1016/j.exger.2013.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Di Filippo C, Marfella R, Capodanno P et al (2008) Acute oxygen-ozone administration to rats protects the heart from ischemia reperfusion infarct. Inflamm Res 57:445–449. doi: 10.1007/s00011-008-7237-0 CrossRefPubMedGoogle Scholar
  15. 15.
    el Ouardighi A, el Akadi A, Aboutajdine D (2007) Feature selection on supervised classification using Wilks lambda statistic. In: 2007 international symposium on computational intelligence and intelligent informatics. IEEE, pp 51–55Google Scholar
  16. 16.
    Elwell CE, Cope M, Edwards AD et al (1994) Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol 77:2753–2760PubMedGoogle Scholar
  17. 17.
    Faust O, Acharya UR, Molinari F et al (2012) Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed Signal Process Control 7:295–302. doi: 10.1016/j.bspc.2011.06.002 CrossRefGoogle Scholar
  18. 18.
    Geng S, Zhou W, Yuan Q et al (2013) EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol Res. doi: 10.1179/1743132811Y.0000000041 Google Scholar
  19. 19.
    He C, Ma X (2015) Distal fallopian tube recanalization using ozone treatment: a clinical study in two hundred tubal obstruction Chinese patients. Int J Clin Exp Med 8:2958–2961PubMedPubMedCentralGoogle Scholar
  20. 20.
    Huang NE, Shen Z, Long S et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454:903–995. doi: 10.1098/rspa.1998.0193 CrossRefGoogle Scholar
  21. 21.
    Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Amer Soc Civil Eng 116:770–808Google Scholar
  22. 22.
    Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005) Characterization of EEG—A comparative study. Comput Methods Programs Biomed 80:17–23. doi: 10.1016/j.cmpb.2005.06.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar U, Kumar V, Kapur JN (1986) Normalized measures of entropy. Int J Gen Syst 12:55–69. doi: 10.1080/03081078608934927 CrossRefGoogle Scholar
  24. 24.
    Liboni W, Molinari F, Allais G et al (2007) Why do we need NIRS in migraine? Neurol Sci 28(Suppl 2):S222–S224. doi: 10.1007/s10072-007-0782-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Lintas G, Molinari F, Simonetti V et al (2013) Time and time-frequency analysis of near-infrared signals for the assessment of ozone autohemotherapy long-term effects in multiple sclerosis. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 2013:6171–6174. doi: 10.1109/EMBC.2013.6610962 Google Scholar
  26. 26.
    Lu F, Selak M, O’Connor J et al (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103. doi: 10.1016/S0022-510X(00)00343-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Martis RJ, Acharya UR, Tan JH et al (2013) Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int J Neural Syst 23:1350023. doi: 10.1142/S0129065713500238 CrossRefPubMedGoogle Scholar
  28. 28.
    Molinari F, Liboni W, Grippi G, Negri E (2006) Relationship between oxygen supply and cerebral blood flow assessed by transcranial Doppler and near-infrared spectroscopy in healthy subjects during breath-holding. J Neuroeng Rehabil 3:16. doi: 10.1186/1743-0003-3-16 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Molinari F, Knaflitz M, Bonato P, Actis MV (2006) Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements. IEEE Trans Biomed Eng 53:1309–1316CrossRefPubMedGoogle Scholar
  30. 30.
    Molinari F, Rosati S, Liboni W et al (2010) Time-frequency characterization of cerebral hemodynamics of migraine sufferers as assessed by NIRS signals. EURASIP J Adv Signal Process 2010:459213. doi: 10.1155/2010/459213 CrossRefGoogle Scholar
  31. 31.
    Molinari F, Acharya UR, Martis RJ et al (2013) Entropy analysis of muscular near-infrared spectroscopy (NIRS) signals during exercise programme of type 2 diabetic patients: quantitative assessment of muscle metabolic pattern. Comput Methods Programs Biomed 112:518–528. doi: 10.1016/j.cmpb.2013.08.018 CrossRefPubMedGoogle Scholar
  32. 32.
    Molinari F, Joy Martis R, Acharya UR et al (2015) Empirical mode decomposition analysis of near-infrared spectroscopy muscular signals to assess the effect of physical activity in type 2 diabetic patients. Comput Biol Med 59:1–9. doi: 10.1016/j.compbiomed.2015.01.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Molinari F, Simonetti V, Franzini M et al (2014) Ozone autohemotherapy induces long-term cerebral metabolic changes in multiple sclerosis patients. Int J Immunopathol Pharmacol 27:379–389CrossRefPubMedGoogle Scholar
  34. 34.
    Morovic S, Zamboni P (2012) CCSVI is associated with multiple sclerosis. Neurol Res 34:770–779. doi: 10.1179/1743132812Y.0000000035 CrossRefPubMedGoogle Scholar
  35. 35.
    Obrig H, Neufang M, Wenzel R et al (2000) Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12:623–639. doi: 10.1006/nimg.2000.0657 CrossRefPubMedGoogle Scholar
  36. 36.
    Pincus SM (2001) Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 954:245–267CrossRefPubMedGoogle Scholar
  37. 37.
    Pincus SM, Goldberger AL (1994) Physiological time-series analysis: What does regularity quantify? Am J Physiol 266:H1643–H1656PubMedGoogle Scholar
  38. 38.
    Re L, Martínez-Sánchez G, Bordicchia M et al (2014) Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol 742:158–162. doi: 10.1016/j.ejphar.2014.08.029 CrossRefPubMedGoogle Scholar
  39. 39.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049PubMedGoogle Scholar
  40. 40.
    Sagai M, Bocci V (2011) Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Med Gas Res 1:29. doi: 10.1186/2045-9912-1-29 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shah P, Shyam AK, Shah S (2011) Adjuvant combined ozone therapy for extensive wound over tibia. Indian J Orthop 45:376–379. doi: 10.4103/0019-5413.80332 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma R, Pachori R, Acharya U (2015) Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17:669–691. doi: 10.3390/e17020669 CrossRefGoogle Scholar
  43. 43.
    Shieh MZ, Tsai SC (2010) Decoding frequency permutation arrays under Chebyshev distance. IEEE Trans Inf Theory 56:5730–5737. doi: 10.1109/TIT.2010.2069253 CrossRefGoogle Scholar
  44. 44.
    Thakor NV, Tong S (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495. doi: 10.1146/annurev.bioeng.5.040202.121601 CrossRefPubMedGoogle Scholar
  45. 45.
    Watanabe K, Miyamoto T, Tanaka Y et al (2012) Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction. Diabetes Res Clin Pract 97:468–473. doi: 10.1016/j.diabres.2012.03.004 CrossRefPubMedGoogle Scholar
  46. 46.
    Zaky S, Kamel SE, Hassan MS et al (2011) Preliminary results of ozone therapy as a possible treatment for patients with chronic hepatitis C. J Altern Complement Med 17:259–263. doi: 10.1089/acm.2010.0016 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2016

Authors and Affiliations

  • Filippo Molinari
    • 1
    Email author
  • Daniele Rimini
    • 1
  • William Liboni
    • 2
  • U. Rajendra Acharya
    • 3
    • 4
  • Marianno Franzini
    • 5
  • Sergio Pandolfi
    • 5
  • Giovanni Ricevuti
    • 6
    • 7
  • Francesco Vaiano
    • 5
  • Luigi Valdenassi
    • 8
  • Vincenzo Simonetti
    • 9
  1. 1.Biolab, Department of Electronics and TelecommunicationsPolitecnico di TorinoTurinItaly
  2. 2.“Un Passo Insieme” ONLUS Foundation, ValdellatorreTurinItaly
  3. 3.Department of Electronics and Computer EngineeringNgee Ann PolytechnicClementiSingapore
  4. 4.Department of Biomedical EngineeringSIM UniversityClementiSingapore
  5. 5.Scientific Society of Oxygen Ozone Therapy (SIOOT)GorleItaly
  6. 6.Geriatric and Emergency Medicine, Postgraduate School in Emergency MedicineUniversity of PaviaPaviaItaly
  7. 7.Geriatric DivisionASP – IDR S. MargheritaPaviaItaly
  8. 8.Department of Internal Medicine and Medical TherapyUniversity of PaviaPaviaItaly
  9. 9.“Kaos” ONLUS FoundationTurinItaly

Personalised recommendations