Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm

  • Tomohiro Otani
  • Satoshi Ii
  • Tomoyoshi Shigematsu
  • Toshiyuki Fujinaka
  • Masayuki Hirata
  • Tomohiko Ozaki
  • Shigeo WadaEmail author
Original Article


Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20–25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.


Cerebral aneurysm Computational fluid dynamics Coil embolization 



This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (No. 23650261), JSPS Research Fellowships for Young Scientist (No. 14J01622) and MEXT as a Priority Issue (Integrated computational life science to support personalized and preventive medicine) to be tackled by using post-K computer.

Compliance with ethical standards

Conflict of interest



  1. 1.
    Babiker MH, Chong B, Gonzalez LF, Cheema S, Frakes DH (2013) Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J Biomech 46:2809–2816. doi: 10.1016/j.jbiomech.2013.08.021 CrossRefPubMedGoogle Scholar
  2. 2.
    Baráth K, Cassot F, Rüfenacht DA, Fasel JH (2004) Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect. AJNR Am J Neuroradiol 25(10):1750–1759PubMedGoogle Scholar
  3. 3.
    Byun HS, Rhee K (2004) CFD modeling of blood flow following coil embolization of aneurysms. Med Eng Phys 26(9):755–761. doi: 10.1016/j.medengphy.2004.06.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Cabel M, Meiselman HJ, Popel AS, Johnson PC (1997) Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 272(2 Pt 2):H1020–H1032PubMedGoogle Scholar
  5. 5.
    Cebral JR, Löhner R (2005) Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imaging 24(4):468–476. doi: 10.1109/TMI.2005.844172 CrossRefPubMedGoogle Scholar
  6. 6.
    Cha KS, Balaras E, Lieber BB, Sadasivan C, Wakhloo AK (2007) Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J Biomech Eng 129(6):873–879. doi: 10.1115/1.2800773 CrossRefPubMedGoogle Scholar
  7. 7.
    Chalouhi N, Jabbour P, Singhal S, Drueding R, Starke RM, Dalyai RT, Tjoumakaris S, Gonzalez LF, Dumont AS, Rosenwasser R, Randazzo CG (2013) Stent-assisted coiling of intracranial aneurysms: predictors of complications, recanalization and outcome in 508 cases. Stroke 44(5):1348–1353. doi: 10.1161/STROKEAHA.111.000641 CrossRefPubMedGoogle Scholar
  8. 8.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379–2393. doi: 10.1016/j.jacc.2007.02.059 CrossRefPubMedGoogle Scholar
  9. 9.
    Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94Google Scholar
  10. 10.
    Flamm MH, Diamond SL (2012) Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng 40(11):2355–2364. doi: 10.1007/s10439-012-0557-9 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ford MD, Alperin N, Lee SH, Holdsworth DW, Steinman DA (2005) Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 26(4):477–488. doi: 10.1088/0967-3334/26/4/013 CrossRefPubMedGoogle Scholar
  12. 12.
    Groden C, Laudan J, Gatchell S, Zeumer H (2001) Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J Cereb Blood Flow Metab 21(12):1464–1471. doi: 10.1097/00004647-200112000-00011 CrossRefPubMedGoogle Scholar
  13. 13.
    Gallas S, Pasco A, Cottier JP, Gabrillargues J, Drouineau J, Cognard C, Herbreteau D (2005) A multicenter study of 705 ruptured intracranial aneurysms treated with Guglielmi detachable coils. AJNR Am J Neuroradiol 26(7):1723–1731PubMedGoogle Scholar
  14. 14.
    Geers AJ, Larrabide I, Morales HG, Frangi AF (2014) Approximating hemodynamics of cerebral aneurysms with steady flow simulations. J Biomech 47(1):178–185. doi: 10.1016/j.jbiomech.2013.09.033 CrossRefPubMedGoogle Scholar
  15. 15.
    Jeong W, Han MH, Rhee K (2013) Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow. Med Biol Eng Comput 51(9):981–990. doi: 10.1007/s11517-013-1073-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Kakalis NM, Mitsos AP, Byrne JV, Ventikos Y (2008) The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans Med Imaging 27(6):814–824. doi: 10.1109/TMI.2008.915549 CrossRefPubMedGoogle Scholar
  17. 17.
    Khanafer K, Berguer R, Schlicht M, Bull J (2009) Numerical modeling of coil compaction in the treatment of cerebral aneurysms using porous media theory. J Porous Med 12:887–897. doi: 10.1615/JPorMedia.v12.i9.50 CrossRefGoogle Scholar
  18. 18.
    Landolt A, Obrist D, Wyss MT, Barrett M, Langer D, Jolivet R, Soltysinski T, Roesgen T, Weber B (2013) Two-photon microscopy with double-circle trajectories for in vivo cerebral blood flow measurements. Exp Fluids 54:1523. doi: 10.1007/s00348-013-1523-5 CrossRefGoogle Scholar
  19. 19.
    Mishra B, Rajamani R (1992) The discrete element method for the simulation of ball mills. Appl Math Model 16(11):598–604. doi: 10.1016/0307-904X(92)90035-2 CrossRefGoogle Scholar
  20. 20.
    Mitsos AP, Kakalis NM, Ventikos YP, Byrne JV (2008) Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50(4):341–347. doi: 10.1007/s00234-007-0334-x CrossRefPubMedGoogle Scholar
  21. 21.
    Morales HG, Kim M, Vivas EE, Villa-Uriol MC, Larrabide I, Sola T, Guimaraens L, Frangi AF (2011) How do coil configuration and packing density influence intra-aneurysmal hemodynamics? AJNR Am J Neuroradiol 32(10):1935–1941. doi: 10.3174/ajnr.A2635 CrossRefPubMedGoogle Scholar
  22. 22.
    Morales HG, Larrabide I, Geers AJ, San Roman L, Blasco J, Macho JM, Frangi AF (2013) A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans Med Imaging 32(1):119–129. doi: 10.1109/TMI.2012.2219626 CrossRefPubMedGoogle Scholar
  23. 23.
    Morales HG, Larrabide I, Geers AJ, Aguilar ML, Frangi AF (2013) Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J Biomech 46(13):2158–2164. doi: 10.1016/j.jbiomech.2013.06.034 CrossRefPubMedGoogle Scholar
  24. 24.
    Morales HG, Larrabide I, Geers AJ, Dai D, Kallmes DF, Frangi AF (2013) Analysis and quantification of endovascular coil distribution inside saccular aneurysms using histological images. J Neurointerv Surg 5(Suppl 3):iii33–iii37. doi: 10.1136/neurintsurg-2012-010456 CrossRefPubMedGoogle Scholar
  25. 25.
    Otani T, Nakamura M, Fujinaka T, Hirata M, Kuroda J, Shibano K, Wada S (2013) Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry. Med Biol Eng Comput 51(8):901–910. doi: 10.1007/s11517-013-1062-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Otani T, Ii S, Fujinaka T, Hirata M, Kuroda J, Shibano K, Wada S (2013) Development of a virtual coil model for blood flow simulation in coil-embolized aneurysms. In: ASME Proceedings of IMECE 2013, IMECE2013-64435:V03AT03A035. doi: 10.1115/IMECE2013-64435
  27. 27.
    Otani T, Ii S, Fujinaka T, Hirata M, Kuroda J, Shibano K, Wada S (2014) Blood flow analysis in patient-specific cerebral aneurysm models with realistic configuration of embolized coils. IFMBE Proc 43:343–346. doi: 10.1007/978-3-319-02913-9_87 CrossRefGoogle Scholar
  28. 28.
    Piotin M, Spelle L, Mounayer C, Salles-Rezende MT, Giansante-Abud D, Vanzin-Santos R, Moret J (2007) Intracranial aneurysms: treatment with bare platinum coils–aneurysm packing, complex coils, and angiographic recurrence. Radiology 243(2):500–508. doi: 10.1148/radiol.2431060006 CrossRefPubMedGoogle Scholar
  29. 29.
    Piotin M, Blanc R, Spelle L, Mounayer C, Piantino R, Schmidt PJ, Moret J (2010) Stent-assisted coiling of intracranial aneurysms: clinical and angiographic results in 216 consecutive aneurysms. Stroke 41(1):110–115. doi: 10.1161/STROKEAHA.109.558114 CrossRefPubMedGoogle Scholar
  30. 30.
    Schirmer CM, Malek AM (2010) Critical influence of framing coil orientation on intra-aneurysmal and neck region hemodynamics in a sidewall aneurysm model. Neurosurgery 67(6):1692–1702. doi: 10.1227/NEU.0b013e3181f9a93b CrossRefPubMedGoogle Scholar
  31. 31.
    Sluzewski M, van Rooij WJ, Slob MJ, Bescós JO, Slump CH, Wijnalda D (2004) Relation between aneurysm volume, packing, and compaction in 145 cerebral aneurysms treated with coils. Radiology 231(3):653–658. doi: 10.1148/radiol.2313030460 CrossRefPubMedGoogle Scholar
  32. 32.
    Tamatani S, Ito Y, Abe H, Koike T, Takeuchi S, Tanaka R (2002) Evaluation of the stability of aneurysms after embolization using detachable coils: correlation between stability of aneurysms and embolized volume of aneurysms. AJNR Am J Neuroradiol 23(5):762–767PubMedGoogle Scholar
  33. 33.
    Tippe A, Müller-Mohnssen H (1993) Shear dependence of the fibrin coagulation kinetics in vitro. Thromb Res 72:379–388CrossRefPubMedGoogle Scholar
  34. 34.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37CrossRefGoogle Scholar
  35. 35.
    Raymond J, Guilbert F, Weill A, Georganos SA, Juravsky L, Lambert A, Lamoureux J, Chagnon M, Roy D (2003) Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34(6):1398–1403. doi: 10.1161/01.STR.0000073841.88563.E9 CrossRefPubMedGoogle Scholar
  36. 36.
    Roy D, Milot G, Raymond J (2001) Endovascular Treatment of Unruptured Aneurysms. Stroke 32(9):1998–2004. doi: 10.1161/hs0901.095600 CrossRefPubMedGoogle Scholar
  37. 37.
    Weiss HJ, Turitto VTBH (1986) Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J Clin Invest 78:1072–1082CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    White JB, Ken CG, Cloft HJ, Kallmes DF (2008) Coils in a nutshell: a review of coil physical properties. AJNR Am J Neuroradiol 29(7):1242–1246. doi: 10.3174/ajnr.A1067 CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2016

Authors and Affiliations

  • Tomohiro Otani
    • 1
  • Satoshi Ii
    • 1
  • Tomoyoshi Shigematsu
    • 2
  • Toshiyuki Fujinaka
    • 2
  • Masayuki Hirata
    • 2
  • Tomohiko Ozaki
    • 2
  • Shigeo Wada
    • 1
    Email author
  1. 1.Department of Mechanical Science and Bioengineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Department of Neurosurgery, Graduate School of MedicineOsaka UniversitySuitaJapan

Personalised recommendations