Medical & Biological Engineering & Computing

, Volume 54, Issue 12, pp 1871–1881 | Cite as

Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model

  • Hui YeEmail author
  • Austen Curcuru
Original Article


Cell membrane deforms in the electromagnetic field, suggesting an interesting control of cellular physiology by the field. Previous research has focused on the biomechanical analysis of membrane deformation under electric fields that are generated by electrodes. An alternative, noninvasive method to generate an electric field is the use of electromagnetic induction with a time-varying magnetic field, such as that used for transcranial magnetic stimulation (TMS). Although references reporting the magnetic control of cellular mechanics have recently emerged, theoretical analysis of the membrane biomechanics under a time-varying magnetic field is inadequate. We developed a cell model that included the membrane as a low-conductive, capacitive shell and investigated the electric pressure generated on the membrane by a low-frequency magnetic field (0–200 kHz). Our results show that externally applied magnetic field induced surface charges on both sides of the membrane. The charges interacted with the induced electric field to produce a radial pressure upon the membrane. Under the low-frequency range, the radial pressure pulled the cell membrane along the axis that was defined by the magnetically induced electric field. The radial pressure was a function of the field frequency, the conductivity ratio of the cytoplasm to the medium, and the size of the cell. It is quantitatively insignificant in deforming the membrane at the frequency used in TMS, but could be significant at a relatively higher-frequency range (>100 kHz).


Time-varying magnetic field Cell model Membrane Biomechanics Transcranial magnetic stimulation (TMS) 



Intensity of the time-varying magnetic field (T)


Intensity of the electric field induced by time-varying magnetic field (V/m)


Surface charge density on the medium/membrane interface (C/m2)


Surface charge density on the membrane/cytoplasm interface (C/m2)


Net induced surface charges on the medium/membrane interface (C)


Net induced surface charges on the membrane/cytoplasm interface (C)


Surface pressure on the medium/membrane interface (N/m2)


Surface pressure on the membrane/cytoplasm interface (N/m2)


Net surface pressure on the cell membrane (N/m2)



The authors thank the Research Support Grant from Loyola University Chicago. Amanda Steiger assisted with the revision of the manuscript.


  1. 1.
    Anninos PA, Tsagas N, Sandyk R, Derpapas K (1991) Magnetic stimulation in the treatment of partial seizures. Int J Neurosci 60(3–4):141–171CrossRefPubMedGoogle Scholar
  2. 2.
    Anninos PA, Tsagas N, Jacobson JI, Kotini A (1999) The biological effects of magnetic stimulation in epileptic patients. Panminerva Med 41(3):207–215PubMedGoogle Scholar
  3. 3.
    Aranda S, Riske KA, Lipowsky R, Dimova R (2008) Morphological transitions of vesicles induced by alternating electric fields. Biophys J 95(2):L19–L21. doi: 10.1529/biophysj.108.132548 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barker AT, Garnham CW, Freeston IL (1991) Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr Clin Neurophysiol Suppl 43:227–237PubMedGoogle Scholar
  5. 5.
    Basser PJ, Roth BJ (1991) Stimulation of a myelinated nerve axon by electromagnetic induction. Med Biol Eng Comput 29(3):261–268CrossRefPubMedGoogle Scholar
  6. 6.
    Bryant G, Wolfe J (1987) Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J Membr Biol 96(2):129–139CrossRefPubMedGoogle Scholar
  7. 7.
    Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170(6):2796–2801CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Darabi J, Guo C (2013) On-chip magnetophoretic isolation of CD4+ T cells from blood. Biomicrofluidics 7(5):54106. doi: 10.1063/1.4821628 CrossRefPubMedGoogle Scholar
  9. 9.
    Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3(7):817–827. doi: 10.1039/B703580b CrossRefGoogle Scholar
  10. 10.
    Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J Cell Sci 114(14):2697–2705PubMedGoogle Scholar
  11. 11.
    Engelhardt H, Sackmann E (1988) On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys J 54(3):495–508. doi: 10.1016/S0006-3495(88)82982-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Epstein CM, Davey KR (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19(4):376–381CrossRefPubMedGoogle Scholar
  13. 13.
    Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefPubMedGoogle Scholar
  14. 14.
    Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447CrossRefPubMedGoogle Scholar
  15. 15.
    Gimsa J, Wachner D (2001) Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys J 81(4):1888–1896. doi: 10.1016/S0006-3495(01)75840-7 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gimsa J, Wachner D (2001) On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur Biophy J EBJ 30(6):463–466CrossRefGoogle Scholar
  17. 17.
    Goldenberg NM, Steinberg BE (2010) Surface charge: a key determinant of protein localization and function. Cancer Res 70(4):1277–1280. doi: 10.1158/0008-5472.CAN-09-2905 CrossRefPubMedGoogle Scholar
  18. 18.
    Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice-Hall Inc, New JerseyGoogle Scholar
  19. 19.
    Hyuga H, Kinosita K, Wakabayashi N (1991) Deformation of vesicles under the influence of strong electric-fields II. Jpn J Appl Phys 1 30(6):1333–1335. doi: 10.1143/Jjap.30.1333 CrossRefGoogle Scholar
  20. 20.
    Jen DH, Steele CR (1987) Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am 82(5):1667–1678CrossRefPubMedGoogle Scholar
  21. 21.
    Kamm R, Lammerding J, Mofrad M (2010) Cellular nanomechanics. In: Bhushan B (ed) Springer handbook of nanotechnology, 3rd edn. Springer, Heidelberg, Dordrecht, London, New York, pp 1171–1200CrossRefGoogle Scholar
  22. 22.
    Konings MK (2007) A new method for spatially selective, non-invasive activation of neurons: concept and computer simulation. Med Biol Eng Compu 45(1):7–24. doi: 10.1007/s11517-006-0136-z CrossRefGoogle Scholar
  23. 23.
    Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79(2):670–679. doi: 10.1016/S0006-3495(00)76325-9 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43(2):285–291CrossRefGoogle Scholar
  25. 25.
    Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43(2):285–291. doi: 10.1016/S0302-4598(97)00023-8 CrossRefGoogle Scholar
  26. 26.
    Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric field—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16CrossRefGoogle Scholar
  27. 27.
    Krasteva VT, Papazov SP, Daskalov IK (2003) Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity. Biomed Eng Online 2:19. doi: 10.1186/1475-925X-2-19 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lipman KM, Dodelson R, Hays RM (1966) The surface charge of isolated toad bladder epithelial cells. Mobility, effect of pH and divalent ions. J Gen Physiol 49(3):501–516CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3):1777–1793. doi: 10.1016/S0006-3495(04)74245-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  31. 31.
    Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, Soria CE, Oquin S, Bonebreak CM, Saracoglu E, Skog J, Kuo WP (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262. doi: 10.1515/hsz-2013-0141 CrossRefPubMedGoogle Scholar
  32. 32.
    Olivotto M, Arcangeli A, Carla M, Wanke E (1996) Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. BioEssays 18(6):495–504. doi: 10.1002/bies.950180612 CrossRefPubMedGoogle Scholar
  33. 33.
    Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1999) Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys J 76(3):1228–1240. doi: 10.1016/S0006-3495(99)77286-3 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Polk C (1990) Electric fields and surface charges induced by ELF magnetic fields. Bioelectromagnetics 11(2):189–201CrossRefPubMedGoogle Scholar
  35. 35.
    Polk C, Song JH (1990) Electric fields induced by low frequency magnetic fields in inhomogeneous biological structures that are surrounded by an electric insulator. Bioelectromagnetics 11(3):235–249CrossRefPubMedGoogle Scholar
  36. 36.
    Polson MJ, Barker AT, Freeston IL (1982) Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput 20(2):243–244CrossRefPubMedGoogle Scholar
  37. 37.
    Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys J 66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reilly JP (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med Biol Eng Comput 27(2):101–110CrossRefPubMedGoogle Scholar
  39. 39.
    Riske KA, Dimova R (2006) Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys J 91(5):1778–1786. doi: 10.1529/biophysj.106.081620 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rols MP, Delteil C, Serin G, Teissie J (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 22(3):540CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Roth BJ, Luterek A, Puwal S (2014) The movement of a nerve in a magnetic field: application to MRI Lorentz effect imaging. Med Biol Eng Comput 52(5):491–498. doi: 10.1007/s11517-014-1153-y CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ruohonen J, Panizza M, Nilsson J, Ravazzani P, Grandori F, Tognola G (1996) Transverse-field activation mechanism in magnetic stimulation of peripheral nerves. Electroencephalogr Clin Neurophysiol 101(2):167–174CrossRefPubMedGoogle Scholar
  43. 43.
    Sadik MM, Li J, Shan JW, Shreiber DI, Lin H (2011) Vesicle deformation and poration under strong dc electric fields. Phys Rev E Stat Nonlinear Soft Matter Phys 83(6 Pt 2):066316CrossRefGoogle Scholar
  44. 44.
    Sandyk R, Anninos PA, Tsagas N, Derpapas K (1992) Magnetic fields in the treatment of Parkinson’s disease. Int J Neurosci 63(1–2):141–150CrossRefPubMedGoogle Scholar
  45. 45.
    Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209CrossRefPubMedGoogle Scholar
  46. 46.
    Sotiropoulos SN, Steinmetz PN (2007) Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng 4(2):107–119. doi: 10.1088/1741-2560/4/2/011 CrossRefPubMedGoogle Scholar
  47. 47.
    Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R (2009) Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys J 96(12):4789–4803. doi: 10.1016/j.bpj.2009.03.054 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454. doi: 10.1146/annurev.bioeng.8.061505.095739 CrossRefPubMedGoogle Scholar
  49. 49.
    Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66(6):2181–2189. doi: 10.1016/S0006-3495(94)81014-8 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127CrossRefPubMedGoogle Scholar
  51. 51.
    Ye H, Curcuru A (2015) Vesicle biomechanics in a time-varying magnetic field. BMC Biophys 8(1):2. doi: 10.1186/s13628-014-0016-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ye H, Steiger A (2015) Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field. J Neuroeng Rehabil 12:65. doi: 10.1186/s12984-015-0061-1 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ye H, Cotic M, Carlen PL (2007) Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation. J Neural Eng 4(3):283–293. doi: 10.1088/1741-2560/4/3/014 CrossRefPubMedGoogle Scholar
  54. 54.
    Ye H, Cotic M, Kang EE, Fehlings MG, Carlen PL (2010) Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study. J Neuroeng Rehabil 7:12. doi: 10.1186/1743-0003-7-12 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ye H, Cotic M, Fehlings MG, Carlen PL (2011) Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model. Med Biol Eng Comput 49(1):107–119. doi: 10.1007/s11517-010-0704-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Ye H, Cotic M, Fehlings MG, Carlen PL (2012) Influence of Cellular Properties on the Electric Field Distribution Around a Single Cell. Prog Electromagn Res B 39:141–161CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2016

Authors and Affiliations

  1. 1.Department of Biology, Quinlan Life Sciences Education and Research CenterLoyola University ChicagoChicagoUSA
  2. 2.Department of PhysicsLoyola University ChicagoChicagoUSA

Personalised recommendations