Medical & Biological Engineering & Computing

, Volume 54, Issue 10, pp 1579–1589 | Cite as

Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description

  • Anna Pagel
  • Alejandro Hernandez Arieta
  • Robert Riener
  • Heike Vallery
Original Article


Despite recent advances in leg prosthetics, transfemoral amputees still experience limitations in postural control and gait symmetry. It has been hypothesized that artificial sensory information might improve the integration of the prosthesis into the human sensory-motor control loops and, thus, reduce these limitations. In three transfemoral amputees, we investigated the effect of Electrotactile Moving Sensation for Sensory Augmentation (EMSSA) without training and present preliminary findings. Experimental conditions included standing with open/closed eyes on stable/unstable ground as well as treadmill walking. For standing conditions, spatiotemporal posturographic measures and sample entropy were derived from the center of pressure. For walking conditions, step length and stance duration were calculated. Conditions without feedback showed effects congruent with findings in the literature, e.g., asymmetric weight bearing and step length, and validated the collected data. During standing, with EMSSA a tendency to influence postural control in a negative way was found: Postural control was less effective and less efficient and the prosthetic leg was less involved. Sample entropy tended to decrease, suggesting that EMSSA demanded increased attention. During walking, with EMSSA no persistent positive effect was found. This contrasts the positive subjective assessment and the positive effect on one subject’s step length.


Electrotactile stimulation Sensory augmentation Neural prosthesis Postural control Prosthetic limb 



This work was supported by the Swiss National Science Foundation through the National Centre of Competence in Research Robotics, by the Gottfried und Julia Bangerter-Rhyner Stiftung, by an ETH research grant, and by the Marie-Curie career integration Grant PCIG13-GA-2013-618899. The authors would like to thank S. Bühler for her support during the experiments, G. Tschupp and the team of BalgristTec for providing their technical expertise, and the subjects who participated.


  1. 1.
    Arieta AH, Yokoi H, Arai T, Yu W (2006) Study on the effects of electrical stimulation on the pattern recognition for an EMG prosthetic application. In: 27th annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS 2005. IEEE, pp 6919–6922Google Scholar
  2. 2.
    Arieta AH, Afthinos M, Dermitzakis K (2011) Apparent moving sensation recognition in prosthetic applications. Proc Comput Sci 7:133–135CrossRefGoogle Scholar
  3. 3.
    Bach-y Rita P (2004) Tactile sensory substitution studies. Ann NY Acad Sci 1013:83–91CrossRefPubMedGoogle Scholar
  4. 4.
    Bamberg SJM, Carson RJ, Stoddard G, Dyer PS, Webster JB (2010) The lower extremity ambulation feedback system for analysis of gait asymmetries: preliminary design and validation results. J Prosthet Orthot 22:31–36CrossRefGoogle Scholar
  5. 5.
    Bellmann M, Schmalz T, Ludwigs E, Blumentritt S (2012) Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed Eng 57:435–444CrossRefGoogle Scholar
  6. 6.
    Blank A, Okamura AM, Kuchenbecker KJ (2010) Identifying the role of proprioception in upper-limb prosthesis control: studies on targeted motion. ACM Trans Appl Percept 7(3):15CrossRefGoogle Scholar
  7. 7.
    Borg FG, Laxaback G (2010) Entropy of balance—some recent results. J Neuroeng Rehabil 7:1–11CrossRefGoogle Scholar
  8. 8.
    Clippinger F, McElhaney J, Maxwell M, Vaughn D, Horton G, Bright L (1981) Prosthetic sensory feedback lower extremity. Newsl Pros Orth Clin 5:1–3Google Scholar
  9. 9.
    Clippinger FW, Seaber AV, McElhaney JH, Harrelson JM, Maxwell GM (1982) Afferent sensory feedback for lower extremity prosthesis. Clin Orthop Relat Res 169:202–206PubMedGoogle Scholar
  10. 10.
    Davis BL, Cavanagh PR (1993) Decomposition of superimposed ground reaction forces into left and right force profiles. J Biomech 26:593–597CrossRefPubMedGoogle Scholar
  11. 11.
    Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 18:1–11CrossRefGoogle Scholar
  12. 12.
    Duclos C, Roll R, Kavounoudias A, Mongeau JP, Roll JP, Forget R (2009) Postural changes after sustained neck muscle contraction in persons with a lower leg amputation. J Electromygr Kinesiol 19(4):e214–e222CrossRefGoogle Scholar
  13. 13.
    Fahramand F, Rezacian T, Narimani R, Dinan PH (2006) Kinematic and dynamic analysis of the gait cycle of above-knee amputees. Sci Iran 13(3):261–271Google Scholar
  14. 14.
    Fan RE, Culjat MO, Kim CH, Franco ML, Boryk R, Bisley JW, Dutson E, Grundfest WS (2008) A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng 16:270–277CrossRefPubMedGoogle Scholar
  15. 15.
    Fan R, Wottawa C, Mulgaonkar A, Boryk R, Sander T, Wyatt M, Dutson E, Grundfest W, Culjat M (2009) Pilot testing of a haptic feedback rehabilitation system on a lower-limb amputee. In: ICME international conference on complex medical engineering, 2009. CME, pp 1–4Google Scholar
  16. 16.
    Fernie GR, Holliday P (1978) Postural sway in amputees and normal subjects. J Bone Joint Surg Am 60(7):895–8PubMedGoogle Scholar
  17. 17.
    Fuhr T, Schmidt G (1999) Design of a patient-mounted multi-sensor system for lower extremity neuroprostheses. In: Proceedings of the first joint BMES/EMBS conference serving humanity, advancing technology, p 662Google Scholar
  18. 18.
    Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15CrossRefPubMedGoogle Scholar
  19. 19.
    Geurts A, Mulder T (1992) Reorganisation of postural control following lower limb amputation: theoretical considerations and implications for rehabilitation. Physiother Theory Pract 8:145–157CrossRefGoogle Scholar
  20. 20.
    Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10(1):60CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gilbert J, Maxwell G, George R Jr, McElhaney J (1982) Technical note—auditory feedback of knee angle for amputees. Prosthet Orthot Int 6:103–104PubMedGoogle Scholar
  22. 22.
    Goldberger A, Amaral L, Glass L (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101:215–220CrossRefGoogle Scholar
  23. 23.
    Hlavackova P, Fristios J, Cuisinier R, Pinsault N, Janura M, Vuillerme N (2009) Effects of mirror feedback on upright stance control in elderly transfemoral amputees. Arch Phys Med Rehabil 90(11):1960–1963CrossRefPubMedGoogle Scholar
  24. 24.
    Hlavackova P, Franco C, Diot B, Vuillerme N (2011) Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: new insights using entropy. PLoS One 6:1–4CrossRefGoogle Scholar
  25. 25.
    Izumi T, Hoshimiya N (1988) A presentation method of a traveling image for the sensory feedback for control of the paralyzed upper extremity. Syst Comput Jpn 19(8):1625–1632CrossRefGoogle Scholar
  26. 26.
    Jaegers SM, Arendzen JH, de Jongh HJ (1995) Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 76:736–743CrossRefPubMedGoogle Scholar
  27. 27.
    Kaczmarek KA (1995) Sensory augmentation and substitution. CRC handbook of biomedical engineering. CRC, Boca Raton, FL, pp 2100–2109Google Scholar
  28. 28.
    Kaczmarek K, Webster J, Bach-y Rita P, Tompkins W (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1–16CrossRefPubMedGoogle Scholar
  29. 29.
    Kawamura J, Sueda O, Harada K, Nishihara K, Isobe S (1981) Sensory feedback systems for the lower-limb prosthesis. J Osaka Rosai Hosp 5:104–112Google Scholar
  30. 30.
    Kulkarni J, Toole C, Hirons R, Wright S, Morris J (1996) Falls in patients with lower limb amputations: prevalence and contributing factors. Physiotherapy 82:130–136CrossRefGoogle Scholar
  31. 31.
    Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. J Physiol Regul Integr Comp Physiol 10:789–797CrossRefGoogle Scholar
  32. 32.
    Martinez-Villalpando EC, Mooney L, Elliott G, Herr H (2011) Antagonistic active knee prosthesis. a metabolic cost of walking comparison with a variable-damping prosthetic knee. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC. IEEE, pp 8519–8522Google Scholar
  33. 33.
    Meyer PF, Oddsson LIE, Lucca CJD (2004) The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res 156:505–512CrossRefPubMedGoogle Scholar
  34. 34.
    Miller WC, Speechley M, Deathe AB (2002) Balance confidence among people with lower-limb amputations. Phys Ther 82:856–865PubMedGoogle Scholar
  35. 35.
    Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142CrossRefPubMedGoogle Scholar
  36. 36.
    Pagel A, Oes J, Pfeifer S, Riener R, Vallery H (2013) Künstliches Feedback für Oberschenkelamputierte-Theoretische Analyse/Artificial feedback for transfemoral amputees-Theoretical analysis. at-Automatisierungstechnik 61(9):621–629CrossRefGoogle Scholar
  37. 37.
    Pfeifer S, Caldiran O, Vallery H, Riener R, Arieta AH (2010) Displaying centre of pressure location by electrotactile stimulation using phantom sensation. In: Proceedings of the 2010 15th annual conference of the international functional electrical stimulation society, pp 1–3Google Scholar
  38. 38.
    Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966CrossRefPubMedGoogle Scholar
  39. 39.
    Pylatiuk C, Kargov A, Schulz S (2006) Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J Prosthet Orthot 18(2):57–61CrossRefGoogle Scholar
  40. 40.
    Ramdani S, Seigle B, Lagardea J, Boucharab F, Bernarda PL (2009) On the use of sample entropy to analyze human postural sway data. Med Eng Phys 31:1023–1031CrossRefPubMedGoogle Scholar
  41. 41.
    Roerdink M, Geurts ACH, de Haart M, Beek PJ (2009) On the relative contribution of the paretic leg to the control of posture after stroke. Neurorehabil Neural Repai 23:267–274CrossRefGoogle Scholar
  42. 42.
    Sabolich JA, Ortega GM (1994) Sense of feel for lower-limb amputees: a phase-one study. J Prosthet Orthot 6:36–41CrossRefGoogle Scholar
  43. 43.
    Seps M, Dermitzakis K, Arieta AH (2011) Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3454–3459Google Scholar
  44. 44.
    Stepp CE, An Q, Matsuoka Y (2012) Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS One 7(2):e32,743CrossRefGoogle Scholar
  45. 45.
    Sup F, Varol H, Mitchell J, Withrow T, Goldfarb M (2009) Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. In: 2009 IEEE 11th international conference on rehabilitation roboticsGoogle Scholar
  46. 46.
    Tschupp G, Vallery H, Riener R, Schanze T, Pagel A (2013) Sensor for artificial feedback in lower limb exoprostheses. In: Proceedings of the 2013 ISPO world congress, p 1Google Scholar
  47. 47.
    Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE T Biomed Eng 57(3):542–551CrossRefGoogle Scholar
  48. 48.
    Vrieling A, van Keeken H, Schoppen T, Otten E, Hof A, Halbertsma J, Postema K (2008) Balance control on a moving platform in unilateral lower limb amputees. Gait Posture 28:222–228CrossRefPubMedGoogle Scholar
  49. 49.
    Webb G, Ewins D, Ghoussayni S (2012) Electro-tactile sensation thresholds for an amputee gait-retraining system. In: 3rd annual conference of the international functional electrical stimulation societyGoogle Scholar
  50. 50.
    Wiener N et al (1948) Cybernetics. Wiley, New YorkGoogle Scholar
  51. 51.
    Yang L, Dyer P, Carson R, Webster J, Foreman KB, Bamberg S (2012) Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait. Gait Posture 36:631–634CrossRefPubMedGoogle Scholar
  52. 52.
    Zambarbieri D, Schmid M, Verni G (2001) Sensory feedback for lower limb prostheses. CRC Press Inc, Boca RatonGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Anna Pagel
    • 1
    • 2
  • Alejandro Hernandez Arieta
    • 3
  • Robert Riener
    • 1
    • 2
  • Heike Vallery
    • 1
    • 4
  1. 1.Sensory-Motor Systems Lab, Department of Health Science and TechnologyETH ZurichZurichSwitzerland
  2. 2.Medical FacultyUniversity of ZurichZurichSwitzerland
  3. 3.Artificial Intelligence Lab, Department of InformaticsUniversity of ZurichZurichSwitzerland
  4. 4.Delft Biorobotics Lab, Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations