Medical & Biological Engineering & Computing

, Volume 54, Issue 7, pp 1085–1096 | Cite as

Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures

  • Timothy Van Rhein
  • Mohammed Alzahrany
  • Arindam Banerjee
  • Gary Salzman
Original Article

Abstract

A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall.

Keywords

Mechanical ventilation Pulmonary flow Large eddy simulation CT scan Waveform 

References

  1. 1.
    Alzahrany M, Banerjee A (2015) Aerosolized drug delivery in patient-specific lung model during invasive high frequency oscillatory ventilation. J Aerosol Sci 81:1–20CrossRefGoogle Scholar
  2. 2.
    Alzahrany M, Banerjee A (2015) A biomechanical model of pendelluft induced lung injury. J Biomech. doi:10.1016/j.jbiomech.2015.04.046 PubMedGoogle Scholar
  3. 3.
    Alzahrany M, Banerjee A, Salzman G (2014) Flow transport and gas mixing during invasive high frequency oscillatory ventilation. Med Eng Phys 36:647–658CrossRefPubMedGoogle Scholar
  4. 4.
    Alzahrany M, Timothy VR, Banerjee A, Salzman G (2014) Fluid flow and particle transport in mechanically ventilated airways Part 2. Particle transport. Med Bio Eng Comput. doi: 10.1007/s11517-015-1408-2 Google Scholar
  5. 5.
    Collins TP, Tabor GR, Young PG (2007) A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med Biol Eng Comput 45:829–836CrossRefPubMedGoogle Scholar
  6. 6.
    Dean WR (1928) Fluid motion in a curved channel. Proc R Soc Lond Ser A 121:402–420CrossRefGoogle Scholar
  7. 7.
    Dehbi A (2011) Prediction of extrathoracic aerosol deposition using RANS-random walk and LES approaches. Aerosol Sci Technol 45:555–569CrossRefGoogle Scholar
  8. 8.
    Dhand R (2008) Aerosol delivery during mechanical ventilation: from basic techniques to new devices. J Aerosol Med Pulm Drug Deliv 21:45–60CrossRefPubMedGoogle Scholar
  9. 9.
    Farkas A, Balashazy I (2007) Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. J Aerosol Sci 38:865–884CrossRefGoogle Scholar
  10. 10.
    Ghasempour F, Andersson R, Andersson B (2014) Multidimensional turbulence spectra—Statistical analysis of turbulent vortices. Appl Math Model 38:4226–4237CrossRefGoogle Scholar
  11. 11.
    Green AS (2004) Modelling of peak-flow wall shear stress in major airways of the lung. J Biomech 37:661–667CrossRefPubMedGoogle Scholar
  12. 12.
    Grimby G, Takishima T, Graham W, Macklem P, Mead J (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Investig 47:1455–1465CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Horsfield K (1971) Models of the human bronchial tree. J Appl Physilol 31:207–217Google Scholar
  14. 14.
    Kanne JP (2012) Clinically Oriented Pulmonary Imaging. Respiratory Medicine Humana Press, TotowaCrossRefGoogle Scholar
  15. 15.
    Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V (2007) Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 49:307–329. doi:10.1016/j.pcad.2006.11.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech 42:301–334CrossRefGoogle Scholar
  17. 17.
    Lieber BB, Zhao Y (1998) Oscillatory flow in a symmetric bifurcation airway model. Ann Biomed Eng 26:821–830CrossRefPubMedGoogle Scholar
  18. 18.
    Lin C-L, Tawhai MH, McLennan G, Hoffman EA (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 57:295–309CrossRefGoogle Scholar
  19. 19.
    MacIntyre NR, Branson RD (2009) Mechanical Ventilation. Elsevier, St. LouisGoogle Scholar
  20. 20.
    Miyawaki S, Tawhai M, Hoffman E, Lin C-L (2012) Effect of carrier gas properties on aerosol distribution in a ct-based human airway numerical model. Ann Biomed Eng 40:1495–1507CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200CrossRefGoogle Scholar
  22. 22.
    Pope SB (2001) Turbulent Flows. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Vinchurkar SC, Longest PW (2008) Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput Fluids 37:317–331CrossRefGoogle Scholar
  24. 24.
    Weibel ER (1963) Morphometry of the Human Lung. Academic, New YorkCrossRefGoogle Scholar
  25. 25.
    Xi J, Longest PW, Martonen TB (2008) Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 104:1761–1777CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Timothy Van Rhein
    • 1
  • Mohammed Alzahrany
    • 2
  • Arindam Banerjee
    • 2
  • Gary Salzman
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Packard Laboratory, Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemUSA
  3. 3.Respiratory and Critical Care MedicineUniversity of Missouri- Kansas City School of MedicineKansas CityUSA

Personalised recommendations