Skip to main content
Log in

Assessing abdominal aorta narrowing using computational fluid dynamics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waves at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure is measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20, 50, 80 and 100 %) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using magnetic resonance imaging and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20 % of the lumen diameter significantly influences the pressure wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stresses and low circumferential strains are also generated at the blockage site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A (2011) Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertropy. J Biomed Biotechnol  2011:1–13. doi:10.1155/2011/729497

    Article  Google Scholar 

  2. Bathe M (1999) Kamm RD (1999) A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J Biomech Eng 121:361–369

    Article  CAS  PubMed  Google Scholar 

  3. Cebral JR, Castro MA, Putman CM (2005) Numerical simulation of flow alterations after carotid artery stenting from multi-modality image data. In: Third MIT conference on computational fluid and solid mechanics, pp 607–611

  4. Chan WC, Wright C, Riddell T, Wells S, Kerr AJ, Gala G, Jackson R (2008) Ethnic and socioeconomic disparities in the prevalence of cardiovascular disease in New Zealand. N Z Med J 121(1285):11–20

    PubMed  Google Scholar 

  5. Charvatova Z, Ostadalova I, Zicha J, Kunes J, Maxova H, Ostadal B (2012) Cardiac tolerance to ischemia in neonatal spontaneously hypertensive rats. Physiol Res 61(Suppl. 1):S145–S153

    CAS  PubMed  Google Scholar 

  6. Daghero F, Bueno N, Peirone A, Ochoa J, Torres GF, Ganame J (2008) Coarctation of the abdominal aorta an uncommon cause of arterial hypertension and stroke. Circ Cardiovasc Imaging 1:e4–e6

    Article  PubMed  Google Scholar 

  7. Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39(1998):89–105

    Article  CAS  PubMed  Google Scholar 

  8. Ebrahim S, Montaner D, Lawlor DA (2004) Clustering of risk factors and social class in childhood and adulthood in British women’s heart and health study: cross sectional analysis. BMJ 328(7444):861. doi:10.1136/bmj.38034.702836.55

  9. Gao F, Ohta O, Matsuzawa T (2008) Fluid structure interaction in layered aortic arch aneurysm model assessing the combined influence of arch aneurysm wall stiffness. Australas Phys Eng Sci Med 31:32–41

    Article  CAS  PubMed  Google Scholar 

  10. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83(2005):155–165

    Article  Google Scholar 

  11. Gianluca DS, Peter M, Mathieu DB, Patrick S, Pascal V, Bendict V (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Compu 48(4):371–380

    Article  Google Scholar 

  12. Hedenqvist P (2008) Anaesthesia and analgesia for surgery in rabbits and rats: a comparison of the effects of different compounds. Ph.D. thesis, Karolinska Institutet, Stockolm, Sweden

  13. Langeveld B, Roks AJ, Tio RA, VanBoven AJ, Van der Want JJ, Henning RH, Van Beusekom HM, Van der Giessen WJ, Van Gilst WH (2004) Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis. J Vasc Res 41:377–386

    Article  PubMed  Google Scholar 

  14. Larsen NE, Leshchiner EA, Parent EG, Hendrikson-Aho J, Balazs EA (1991) Hylan gel composition for percutaneous embolization cardiovascular. J Biomed Mater Res 25(1991):699–710

    Article  CAS  PubMed  Google Scholar 

  15. Marshall S, Milligan A, Yates R (1994) Experimental techniques and anaesthesia in the rat and mouse. Anzccart Fact Sheet 7(1):1–4

    Google Scholar 

  16. Mendis S (2005) Cardiovascular risk assessment and management in developing countries. Vasc Health Risk Manag 1(1):15–18

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nichols WW, O’Rourke MF (2011) McDonald’s blood flow in arteries. Hodder Arnold, London

    Google Scholar 

  18. Rentschler ME, Baxter BT (2008) Screening aortic drug treatments through arterial compliance measurements. Curr Vasc Pharmacol 6:250–257. doi:10.2174/157016108785909751

    Article  CAS  PubMed  Google Scholar 

  19. Restini C, Reis R, Costa-Neto C, Garcia-Cairasco N, Cortes-de-Oliveira J, Bendhack L (2012) Role of endothelium on the abnormal Angiotensin-mediated vascular functions in epileptic rats. J Biophys Chem 3(2):174–182

    Article  CAS  Google Scholar 

  20. Russell JC (2003) Of mice and men, rats and atherosclerosis. Cardiovasc Res 59(2003):810–811

    Article  CAS  PubMed  Google Scholar 

  21. Sebastia C, Quiroga S, Boye R, Perez-Lafuente M, Castella E, Alvarez-Castells A (2003) Aortic stenosis: spectrum of diseases depicted at multi-section CT. Radio Graph 23:S79–S91

    Google Scholar 

  22. Soudah E, Ng EY, Loong TH, Bordone M, Pua U, Narayanan S (2013) CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med 2013:9, Article ID 472564

  23. Still WJS, O’Neal RM (1962) Electron microscopic study of experimental atherosclerosis in the rat. Am J Pathol 40(1):21–35

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J Biomech Eng 123:548–557

    Article  CAS  PubMed  Google Scholar 

  25. Vukicevic AM, Stepanovic NM, Jovicic GR, Apostolovic SR, Filipovic ND (2014) Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 52(6):539–556. doi:10.1007/s11517-014-1155-9

    Article  PubMed  Google Scholar 

  26. Wronska-Nofer T, Szendzikowski S, Oberebska-Parke M (1980) Influence of chronic carbon disulphide intoxication on the development of experimental atherosclerosis in rats. Br J Ind Med 37:387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yannis P, Nicolas A, Ioannis S, Mohmmad IK, Georgios CB, Elena E, Andreas SA (2013) Effect of head posture on the healthy human carotid bifurcation hemodynamics. Med Biol Eng Compu 51(1–2):207–218

    Google Scholar 

Download references

Acknowledgments

This study was supported and funded by IBTec (Institute of Biomedical Technologies), Auckland University of Technology. The animal data were collected at Vernon Jansen Unit (VJU) at the University of Auckland with ethical approval R915 and the assistance of Dr. Jun Lu and IBTec’s PhD Candidate Miguel Jo-Avila. There are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Al-Jumaily.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rawi, M., Al-Jumaily, A.M. Assessing abdominal aorta narrowing using computational fluid dynamics. Med Biol Eng Comput 54, 843–853 (2016). https://doi.org/10.1007/s11517-015-1375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1375-7

Keywords

Navigation