Medical & Biological Engineering & Computing

, Volume 54, Issue 4, pp 675–689 | Cite as

Sound transmission in porcine thorax through airway insonification

  • Ying Peng
  • Zoujun Dai
  • Hansen A. Mansy
  • Brian M. Henry
  • Richard H. Sandler
  • Robert A. Balk
  • Thomas J. Royston
Original Article


Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.


Computational modeling Lung acoustics Sound transmission Pneumothorax Animal modeling 



Financial support of the National Institutes of Health (Grant No. EB012142) is acknowledged.


  1. 1.
    Armstrong J, Gluck E, Crapo R (1982) Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 37(9):676–679CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bergstresser T, Ofengeim D, Vyshedskiy A et al (2002) Sound transmission in the lung as a function of lung volume. J Appl Physiol 93:667–674CrossRefPubMedGoogle Scholar
  3. 3.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. J Acoust Soc Am 28:168CrossRefGoogle Scholar
  4. 4.
    Biot MA (1956) Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range. J Acoust Soc Am 28:179CrossRefGoogle Scholar
  5. 5.
    Böhme HRBH (1972) Variable low-frequency sound conduction of the lung in pulmonary emphysema. Z Gesamte Inn Med 27:765–770PubMedGoogle Scholar
  6. 6.
    Bourbié T, Coussy O (1987) Acoustics of porous media. Editions TECHNIPGoogle Scholar
  7. 7.
    Cowin SC (2001) Bone mechanics handbook, 2nd edn. Gulf Publishing Company, Huston, TXGoogle Scholar
  8. 8.
    Dai Z, Peng Y, Henry B et al (2014) A comprehensive computational model of sound transmission through the porcine lung. J Acoust Soc Am 136(3):1419–1429CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dai Z, Peng Y, Mansy HA et al (2014) Comparison of poroviscoelastic models for sound and vibration in the lungs. J Vib Acoust 136:051012CrossRefGoogle Scholar
  10. 10.
    Dai Z, Peng Y, Mansy HA et al (2015) A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med Eng Phys. doi: 10.1016/j.medengphy.2015.05.003 PubMedGoogle Scholar
  11. 11.
    Donnerberg RL, Druzgalski CK, Hamlin RL et al (1980) Sound transfer function of the congested canine lung. Br J Dis Chest 74:23–31CrossRefPubMedGoogle Scholar
  12. 12.
    DuBois AB, Brody AW, Lewis DH, Burgess BFJ (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594PubMedGoogle Scholar
  13. 13.
    Fung Y (1997) Biomechanics: circulation. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Garner E, Lakes R, Lee T et al (2000) Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J Biomech Eng 122:166CrossRefPubMedGoogle Scholar
  15. 15.
    Goss BC, McGee KP, Ehman EC et al (2006) Magnetic resonance elastography of the lung: technical feasibility. Magn Reson Med 56:1060–1066CrossRefPubMedGoogle Scholar
  16. 16.
    Haas C, Best T, Wang Q (2012) In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise. J Biomech. doi: 10.1016/j.jbiomech.2012.08.008 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Habib RH, Chalker RB, Suki B, Jackson AC (1994) Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans. J Appl Physiol 77:441–451PubMedGoogle Scholar
  18. 18.
    Habib RH, Suki B, Bates JH, Jackson AC (1994) Serial distribution of airway mechanical properties in dogs: effects of histamine. J Appl Physiol 77:554–566PubMedGoogle Scholar
  19. 19.
    Horsfield K, Dart G, Olson DE et al (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217PubMedGoogle Scholar
  20. 20.
    Horsfield K, Kemp W, Phillips S (1982) An asymmetrical model of the airways of the dog lung. J Appl Physiol 52:21–26PubMedGoogle Scholar
  21. 21.
    Jahed M, Lai-Fook SJ (1994) Stress wave velocity measured in intact pig lungs with cross-spectral analysis. J Appl Physiol 76:565–571PubMedGoogle Scholar
  22. 22.
    Jahed M, Lai-Fook SJ, Bhagat PK, Kraman SS (1989) Propagation of stress waves in inflated sheep lungs. J Appl Physiol 66:2675–2680CrossRefPubMedGoogle Scholar
  23. 23.
    Kraman SS (1983) Speed of low-frequency sound through lungs of normal men. J Appl Physiol 55:1862–1867PubMedGoogle Scholar
  24. 24.
    Kraman SS, Austrheim O (1983) Comparison of lung sound and transmitted sound amplitude in normal men. Am Rev Respir Dis 128:451–454CrossRefPubMedGoogle Scholar
  25. 25.
    Kraman SS, Bohadana AB (1989) Transmission to the chest of sound introduced at the mouth. J Appl Physiol 66:278–281CrossRefPubMedGoogle Scholar
  26. 26.
    Lakes RS, Katz JL, Sternstein SS (1979) Viscoelastic properties of wet cortical bone—I. Torsional and biaxial studies. J Biomech 12:657–678CrossRefPubMedGoogle Scholar
  27. 27.
    Li B, You JH, Kim Y-J (2013) Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator. Smart Mater Struct 22:055013CrossRefGoogle Scholar
  28. 28.
    Mahagnah M, Gavriely N (1995) Gas density does not affect pulmonary acoustic transmission in normal men. J Appl Physiol 78:928–937PubMedGoogle Scholar
  29. 29.
    Mansy HA, Royston TJ, Sandler RH (2001) Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum detection. Med Biol Eng Comput 39:159–167CrossRefPubMedGoogle Scholar
  30. 30.
    Mansy HA, Royston TJ, Balk RA, Sandler RH (2002) Pneumothorax detection using pulmonary acoustic transmission measurements. Med Biol Eng Comput 40:520–525CrossRefPubMedGoogle Scholar
  31. 31.
    Mansy HA, BalK RA, Warren WH et al (2015) Pneumothorax effects on pulmonary acoustic transmission. J Appl Physiol. doi: 10.1152/japplphysiol.00148.2015 PubMedGoogle Scholar
  32. 32.
    Mariappan YK, Glaser KJ, Hubmayr RD et al (2011) MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging 33:1351–1361CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73CrossRefPubMedGoogle Scholar
  34. 34.
    Multiphysics C (2011) Acoustics module user guide version 4.2. User’s manualGoogle Scholar
  35. 35.
    Nedel LP, Thalmann D Real time muscle deformations using mass-spring systems. In: Proceedings of computer graphics international (Cat. No.98EX149). IEEE computer society, pp 156–165Google Scholar
  36. 36.
    Niu Y, Shen W, Stuhmiller JH (2007) Finite element models of rib as an inhomogeneous beam structure under high-speed impacts. Med Eng Phys 29:788–798CrossRefPubMedGoogle Scholar
  37. 37.
    Paciej R, Vyshedskiy A, Shane J, Murphy R (2003) Transpulmonary speed of sound input into the supraclavicular space. J Appl Physiol 94:604–611CrossRefPubMedGoogle Scholar
  38. 38.
    Panzer MB, Myers BS, Capehart BP, Bass CR (2012) Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann Biomed Eng 40:1530–1544CrossRefPubMedGoogle Scholar
  39. 39.
    Pasterkamp H, Patel S, Wodicka GR (1997) Asymmetry of respiratory sounds and thoracic transmission. Med Biol Eng Comput 35:103–106CrossRefPubMedGoogle Scholar
  40. 40.
    Peng Y, Dai Z, Mansy HA et al (2014) Sound transmission in the chest under surface excitation: an experimental and computational study with diagnostic applications. Med Biol Eng Comput 52:695–706CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Peng Y, Khavari R, Stewart JN et al (2015) The single-incision sling to treat female stress urinary incontinence: a dynamic computational study of outcomes and risk factors. J Biomech Eng. doi: 10.1115/1.4030978 PubMedGoogle Scholar
  42. 42.
    Rice DA (1983) Sound speed in pulmonary parenchyma. J Appl Physiol 54:304–308PubMedGoogle Scholar
  43. 43.
    Royston T, Acikgoz S (2008) Advances in computational modeling of sound propagation in the lungs and torso with diagnostic applications. In: Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling. ASME PressGoogle Scholar
  44. 44.
    Royston TJ, Zhang X, Mansy HA, Sandler RH (2002) Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung. J Acoust Soc Am 111:1931CrossRefPubMedGoogle Scholar
  45. 45.
    Royston TJ, Acikgoz S, Ozer MB et al. (2008) Advances in computational modeling of sound propagation in the lungs and torso with diagnostic applications. In: Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling. ASME Press, p 32Google Scholar
  46. 46.
    Royston TJ, Dai Z, Chaunsali R et al (2011) Estimating material viscoelastic properties based on surface wave measurements: a comparison of techniques and modeling assumptions. J Acoust Soc Am 130:4126–4138CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schanz M (2012) Wave propagation in viscoelastic and poroelastic continua: a boundary element approach. Springer, New YorkGoogle Scholar
  48. 48.
    Schmidt S, Cela C, Singh V, Weiland J (2008) Computational modeling of electromagnetic and thermal effects for a dual-unit retinal prosthesis: inductive telemetry, temperature increase, and current densities in the. Artif, SightGoogle Scholar
  49. 49.
    Siklosi M, Jensen O, Tew R, Logg A (2008) Multiscale modeling of the acoustic properties of lung parenchyma. In: ESAIM Proceedings, pp 78–97Google Scholar
  50. 50.
    Simon BR (1992) Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev 45:191CrossRefGoogle Scholar
  51. 51.
    Simon BR, Liable JP, Pflaster D et al (1996) A poroelastic finite element formulation including transport and swelling in soft tissue structures. J Biomech Eng 118:1CrossRefPubMedGoogle Scholar
  52. 52.
    Suki B, Habib RH, Jackson AC (1993) Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1600 Hz. J Appl Physiol 75:2755–2766PubMedGoogle Scholar
  53. 53.
    Tisi GM, Minh VD, Friedman PJ (1975) In vivo dimensional response of airways of different size to transpulmonary pressure. J Appl Physiol 39:23–29PubMedGoogle Scholar
  54. 54.
    Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41:1555–1566CrossRefPubMedGoogle Scholar
  55. 55.
    Von Gierke HE, Oestreicher HL, Franke EK et al (1952) Physics of vibrations in living tissues. J Appl Physiol 4:886–900PubMedGoogle Scholar
  56. 56.
    Vovk IV, Grinchenko VT, Oleinik VN (1995) Modeling the acoustic properties of the chest and measuring breath sounds. Acoust Phys 41:667–676Google Scholar
  57. 57.
    Wang Q, Zeng H, Best TM et al (2014) A mechatronic system for quantitative application and assessment of massage-like actions in small animals. Ann Biomed Eng 42:36–49CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wodicka GR, Stevens KN, Golub HL et al (1989) A model of acoustic transmission in the respiratory system. IEEE Trans Biomed Eng 36:925–934CrossRefPubMedGoogle Scholar
  59. 59.
    Wodicka GR, DeFrain PD, Kraman SS (1994) Bilateral asymmetry of respiratory acoustic transmission. Med Biol Eng Comput 32:489–494CrossRefPubMedGoogle Scholar
  60. 60.
    Yen RT, Fung YC, Ho HH, Butterman G (1986) Speed of stress wave propagation in lung. J Appl Physiol 61:701–705PubMedGoogle Scholar
  61. 61.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Ying Peng
    • 1
  • Zoujun Dai
    • 1
  • Hansen A. Mansy
    • 2
    • 3
  • Brian M. Henry
    • 1
  • Richard H. Sandler
    • 2
    • 3
  • Robert A. Balk
    • 4
  • Thomas J. Royston
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.University of Central FloridaOrlandoUSA
  3. 3.Nemours Children’s HospitalOrlandoUSA
  4. 4.Rush University Medical CenterChicagoUSA

Personalised recommendations