Advertisement

Medical & Biological Engineering & Computing

, Volume 53, Issue 10, pp 951–959 | Cite as

Biomechanical behavior of human crural fascia in anterior and posterior regions of the lower limb

  • Piero G. PavanEmail author
  • Paola Pachera
  • Carla Stecco
  • Arturo N. Natali
Original Article

Abstract

The present work focuses on the numerical modeling of the mechanical behavior of the crural fascia, the deep fascia enwrapping the lower limb muscles. This fascia has an important biomechanical role, due to its interaction with muscles during contraction and its association with pathological events, such as compartment syndrome. The mechanical response of the crural fascia is described by assuming a hyperelastic fiber-reinforced constitutive model, with families of fibers disposed according to the spatial disposition of the collagen network, as shown in histological analyses. A two-dimensional finite element model of a lower limb transversal section has been developed to analyze deformational behavior, with particular attention on interaction phenomena between crural fascia and enwrapped muscles. The constitutive model adopted for the crural fascia well fits experimental data taken along the proximal–distal and medial–lateral directions. The finite element analysis allows for interpreting the relation between change in volume and pressure of muscle compartments and the crural fascia deformation.

Keywords

Crural fascia Constitutive modeling Hyperelasticity Finite element analysis Compartment syndrome 

References

  1. 1.
    Annaidh AN, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2013) Characterising the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5(1):139–148CrossRefGoogle Scholar
  2. 2.
    Azizi E, Halenda GM, Roberts TJ (2009) Mechanical properties of the gastrocnemius aponeurosis in wild turkeys. Integr Comp Biol 49(1):51–58PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Benettazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C (2010) 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat 33:855–862CrossRefGoogle Scholar
  4. 4.
    Benjamin M (2009) The fascia of the limbs and back: a review. J Anat 214:1–18PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Trans Math Softw 13(3):262–280CrossRefGoogle Scholar
  6. 6.
    Dahl M, Hansen P, Stål P, Edmundsson D, Magnusson SP (2011) Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome. Clin Orthop Relat Res 469:3495–3500PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    French EZ, Price WH (1962) Anterior tibial pain. Br Med J 2:1290PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Geerligs M, Peters WMG, Ackermans PAJ, Oomens CWJ, Baaijens FTP (2008) Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45:677–688PubMedGoogle Scholar
  9. 9.
    Gershuni DH, Gosink BB, Hargens AR, Gould RN, Forsythe JR, Mubarak SJ, Akeson WH (2011) Ultrasound evaluation of the anterior musculofascial compartment of the leg following exercise. Clin Orthop Relat Res 10:59–65Google Scholar
  10. 10.
    Hargens AR, Schmidt DA, Evans KL, Gonsalves MR, Cologne JB, Garfin SR, Mubarak SJ (1981) Quantitation of skeletal-muscle necrosis in a model compartment syndrome. J Bon Joint Surg Am 63(4):631–636Google Scholar
  11. 11.
    Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48CrossRefGoogle Scholar
  12. 12.
    Hurschler C, Vanderby R, Martinez DA, Vailas AC, Turnipseed WD (1994) Mechanical and biomechanical analyses of tibial compartment fascia in chronic compartment syndrome. Ann Biomed Eng 22:272–279CrossRefPubMedGoogle Scholar
  13. 13.
    Mattei CP, Beca S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30:599–606CrossRefGoogle Scholar
  14. 14.
    Mubarak SJ, Owen CA, Hargens AR, Garetto LP, Akeson WH (1978) Acute compartment syndromes: diagnosis and treatment with the aid of the wick catheter. J Bon Joint Surg Am 60(8):1901–1905Google Scholar
  15. 15.
    Natali AN, Carniel EL, Pavan PG (2008) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7):905–912CrossRefPubMedGoogle Scholar
  16. 16.
    Natali AN, Pavan PG, Stecco C (2010) A constitutive model for the mechanical characterization of the plantar fascia. Connect Tissue Res 51(5):337–346CrossRefPubMedGoogle Scholar
  17. 17.
    Pavan P, Stecco C, Pachera P, Natali AN (2012) Assessment of the mechanical properties of the human crural fascia. In: Cappozzo A, D’Alessio T, Guglielmelli E, Pennestrì E, Salinari S (eds) Congresso Nazionale di Bioingegneria. Patròn, Bologna, pp 191–192Google Scholar
  18. 18.
    Pfaeffle HJ, Toamino MM, Grewal R, Xu J, Boardman ND, Woo SL, Herndon JH (1996) Tensile properties of the interosseous membrane of the human forearm. J Orthop Res 14(5):842–845CrossRefPubMedGoogle Scholar
  19. 19.
    Simmonds N, Miller P, Gemmel H (2010) A theoretical framework for the role of fascia in manual therapy. J Bodywork Mov Ther 16:83–93CrossRefGoogle Scholar
  20. 20.
    Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Continuum physics, vol 1. Academic Press, New York, pp 239–353Google Scholar
  21. 21.
    Stecco C, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, De Caro R (2008) Histological study of the deep fascia of the limbs. J Bodywork Mov Ther 12(3):225–230CrossRefGoogle Scholar
  22. 22.
    Stecco A, Macchi V, Masiero S, Porzionato A, Tiengo C, Stecco C, Delmas V, De Caro R (2008) Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat 31(1):35–42CrossRefPubMedGoogle Scholar
  23. 23.
    Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, Natali AN, De Caro R (2009) Mechanics of crural fascia: from anatomy to constitutive modelling. Surg Radiol Anat 31:523–529CrossRefPubMedGoogle Scholar
  24. 24.
    Stecco S, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, De Caro R (2009) Anatomical study of myofascial continuity in the anterior region of the upper limb. J Bodywork Mov Ther 13:53–62CrossRefGoogle Scholar
  25. 25.
    Stecco C, Porzionato A, Lancerotto L, Stecco A, Masiero S, Day JA, De Caro R (2009) The pectoral fascia: anatomical and histological study. J Bodywork Mov Ther 13:255–261CrossRefGoogle Scholar
  26. 26.
    Stecco C, Pavan PG, Pachera P, De Caro R, Natali AN (2013) Investigation of the mechanical properties of the human crural fascia and their possible clinical implications. Surg Radiol Anat pp 1–8, doi:  10.1007/s00276-013-1152-y (in press)
  27. 27.
    van Donkelaar CC, Huyghe JM, Vankan WJ, Drost MR (2001) Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction. J Biomech 34:631–637CrossRefPubMedGoogle Scholar
  28. 28.
    Warme WJ, Matesen FA (2013) Compartmental Syndromes. http://www.orthop.washington.edu/?q=patient-care/articles/shoulder/compartmental-syndromes.html. Accessed 26 Nov 2013

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Piero G. Pavan
    • 1
    • 3
    Email author
  • Paola Pachera
    • 1
    • 3
  • Carla Stecco
    • 2
    • 3
  • Arturo N. Natali
    • 1
    • 3
  1. 1.Department of Industrial EngineeringUniversity of PadovaPadovaItaly
  2. 2.Department of Molecular MedicineUniversity of PadovaPadovaItaly
  3. 3.Centre of Mechanics of Biological MaterialsUniversity of PadovaPadovaItaly

Personalised recommendations