Medical & Biological Engineering & Computing

, Volume 53, Issue 9, pp 781–790 | Cite as

Multi-patient finite element simulation of keeled versus pegged glenoid implant designs in shoulder arthroplasty

  • Werner Pomwenger
  • Karl Entacher
  • Herbert Resch
  • Peter Schuller-Götzburg
Original Article


This study investigates the mechanical behaviour of keeled and pegged implant designs used in shoulder arthroplasty for the first time using multiple 3D models. Thus, this study should provide valuable insights into the preferable use of either of these two controversial implant designs. Three-dimensional models of a scapula were derived from the CT scans of five patients, and an inter-patient-specific finite element analysis with special attention to bone density and boundary conditions was carried out. A distinct decrease in the investigated parameters was evident with the pegged implant in all of the patients, specifically for the implant and the bone cement. The relevance of the stress reduction within the bone is minor, whereas the reduction in the stress of the bone cement contributes to an increase in the bone cement survival. The particular construction of the pegged implant provides better stability and therefore supports bone ingrowth. The large variations between the patients show the necessity of patient-specific simulations and the use of multiple models to derive valuable results. In the conducted inter-patient-specific FEA, the pegged glenoid implants were found to exhibit superior behaviour compared with keeled implants. The results confirm the general clinical findings and demonstrate the FEA as a valuable tool in prosthetic and orthopaedic problems.


Glenoid implant 3D modelling Finite element analysis Boundary conditions Micromotions 



This project is supported by the Austrian FWF Translational Research Program L526-B05 and the PMU-FFF Rise Project R-09/03/003-SCH. The study was approved by the Ethics Committee of Salzburg, No. 415-E803/3-2007.


  1. 1.
    Aldinger PR, Raiss P, Rickert M, Loew M (2010) Complications in shoulder arthroplasty: an analysis of 485 cases. Int Orthop 34(4):517–524PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Anglin C, Wyss UP, Nyffeler RW, Gerber C (2001) Loosening performance of cemented glenoid prosthesis design pairs. Clin Biomech 16(2):144–150CrossRefGoogle Scholar
  3. 3.
    Anglin C, Wyss UP, Pichora DR (2009) Shoulder prosthesis subluxation: theory and experiment. J Shoulder Elbow Surg 9(2):104–114CrossRefGoogle Scholar
  4. 4.
    ASTM F451 (2008) Standard specification for acrylic bone cement. ASTM International, West ConshohockenGoogle Scholar
  5. 5.
    Bartelt R, Sperling JW, Schleck CD, Cofield RH (2011) Shoulder arthroplasty in patients aged fifty-five years or younger with osteoarthritis. J Shoulder Elbow Surg 20(1):123–130CrossRefPubMedGoogle Scholar
  6. 6.
    Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P (2007) In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. J Biomech 40(10):2139–2149CrossRefPubMedGoogle Scholar
  7. 7.
    Bishop JL, Kline SK, Aalderink KJ, Zauel R, Bey MJ (2009) Glenoid inclination: in vivo measures in rotator cuff tear patients and associations with superior glenohumeral joint translation. J Shoulder Elbow Surg 18(2):231–236PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Bohsali KI, Wirth MA, Rockwood CA (2006) Complications of total shoulder arthroplasty. J Bone Joint Surg Am 88(10):2279–2292CrossRefPubMedGoogle Scholar
  9. 9.
    Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59(7):954–962PubMedGoogle Scholar
  10. 10.
    Chin PYK, Sperling JW, Cofield RH, Schleck C (2006) Complications of total shoulder arthroplasty: are they fewer or different? J Shoulder Elbow Surg 15(1):19–22CrossRefPubMedGoogle Scholar
  11. 11.
    Couteau B, Mansat P, Mansat M, Darmana R, Egan J (2001) In vivo characterization of glenoid with use of computed tomography. J Shoulder Elbow Surg 10(2):116–122CrossRefPubMedGoogle Scholar
  12. 12.
    Edwards TB, Labriola JE, Stanley RJ, O’Connor DP, Elkousy HA, Gartsman GM (2010) Radiographic comparison of pegged and keeled glenoid components using modern cementing techniques: a prospective randomized study. J Shoulder Elbow Surg 19(2):251–257CrossRefPubMedGoogle Scholar
  13. 13.
    Favre P, Sheikh R, Fucentese SF, Jacob HAC (2005) An algorithm for estimation of shoulder muscle forces for clinical use. Clin Biomech (Bristol, Avon) 20(8):822–833Google Scholar
  14. 14.
    Fox TJ, Cil A, Sperling JW, Sanchez-Sotelo J, Schleck CD, Cofield RH (2009) Survival of the glenoid component in shoulder arthroplasty. J Shoulder Elbow Surg 18(6):859–863CrossRefPubMedGoogle Scholar
  15. 15.
    Franklin JL, Barrett WP, Jackins SE, Matsen FA (1988) Glenoid loosening in total shoulder arthroplasty. Association with rotator cuff deficiency. J Arthroplasty 3(1):39–46CrossRefPubMedGoogle Scholar
  16. 16.
    Frich LH, Jensen NC, Odgaard A, Pedersen CM, Søjbjerg JO, Dalstra M (1997) Bone strength and material properties of the glenoid. J Shoulder Elbow Surg 6(2):97–104CrossRefPubMedGoogle Scholar
  17. 17.
    Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101CrossRefPubMedGoogle Scholar
  18. 18.
    Gartsman GM, Elkousy HA, Warnock KM, Edwards TB, O’Connor DP (2005) Radiographic comparison of pegged and keeled glenoid components. J Shoulder Elbow Surg 14(3):252–257CrossRefPubMedGoogle Scholar
  19. 19.
    Gupta S, Prosenjit D (2004) Bone geometry and mechanical properties of the human scapula using computed tomography data. Trends Biomater Artif Organs 17(2):61–70Google Scholar
  20. 20.
    Hopkins AR, Hansen UN, Amis AA, Taylor M, Emery RJ (2007) Glenohumeral kinematics following total shoulder arthroplasty: a finite element investigation. J Orthop Res 25(1):108–115. doi: 10.1002/jor.20290 CrossRefPubMedGoogle Scholar
  21. 21.
    Kalouche I, Crépin J, Abdelmoumen S, Mitton D, Guillot G, Gagey O (2010) Mechanical properties of glenoid cancellous bone. Clin Biomech (Bristol, Avon) 25(4):292–298Google Scholar
  22. 22.
    Kasten P, Pape G, Raiss P, Bruckner T, Rickert M, Zeifang F, Loew M (2010) Mid-term survivorship analysis of a shoulder replacement with a keeled glenoid and a modern cementing technique. J Bone Joint Surg Br 92(3):387–392CrossRefPubMedGoogle Scholar
  23. 23.
    Kurtz SM, Villarraga ML, Zhao K, Edidin AA (2005) Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Biomaterials 26(17):3699–3712CrossRefPubMedGoogle Scholar
  24. 24.
    Lacroix D, Prendergast PJ (1997) Stress analysis of glenoid component designs for shoulder arthroplasty. Proc Inst Mech Eng H 211(6):467–474CrossRefPubMedGoogle Scholar
  25. 25.
    Lacroix D, Murphy LA, Prendergast PJ (2000) Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng 122(4):430–436CrossRefPubMedGoogle Scholar
  26. 26.
    Lazarus MD, Jensen KL, Southworth C, Matsen FA (2002) The radiographic evaluation of keeled and pegged glenoid component. J Bone Joint Surg Am 84A(7):1174–1182Google Scholar
  27. 27.
    Mansat P, Briot J, Mansat M, Swider P (2007) Evaluation of the glenoid implant survival using a biomechanical finite element analysis: influence of the implant design, bone properties, and loading location. J Shoulder Elbow Surg 16(3 Suppl):79–83CrossRefGoogle Scholar
  28. 28.
    Mimar R, Limb D, Hall RM (2008) Evaluation of the mechanical and architectural properties of glenoid bone. J Shoulder Elbow Surg 17(2):336–341CrossRefPubMedGoogle Scholar
  29. 29.
    Neer CS (1955) Articular replacement for the humeral head. J Bone Joint Surg Am 37-A(2):215–228Google Scholar
  30. 30.
    Nikooyan AA, Veeger HEJ, Westerhoff P, Graichen F, Bergmann G, van der Helm FCT (2010) Validation of the delft shoulder and elbow model using in vivo glenohumeral joint contact forces. J Biomech 43(15):3007–3014CrossRefPubMedGoogle Scholar
  31. 31.
    Nuttall D, Haines JF, Trail II (2007) A study of the micromovement of pegged and keeled glenoid components compared using radiostereometric analysis. J Shoulder Elbow Surg 16(3 Suppl):65–70CrossRefGoogle Scholar
  32. 32.
    Rahme H, Mattsson P, Wikblad L, Nowak J, Larsson S (2009) Stability of cemented in-line pegged glenoid compared with keeled glenoid components in total shoulder arthroplasty. J Bone Joint Surg Am 91A(8):1965–1972CrossRefGoogle Scholar
  33. 33.
    Ramaniraka NA, Rakotomanana LR, Leyvraz PF (2000) The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J Bone Joint Surg Br 82(2):297–303CrossRefPubMedGoogle Scholar
  34. 34.
    Stadelmann VA, Terrier A, Pioletti DP (2008) Microstimulation at the bone-implant interface upregulates osteoclast activation pathways. Bone 42(2):358–364CrossRefPubMedGoogle Scholar
  35. 35.
    Terrier A, Büchler P, Farron A (2005) Bone-cement interface of the glenoid component: stress analysis for varying cement thickness. Clin Biomech (Bristol, Avon) 20(7):710–717Google Scholar
  36. 36.
    Terrier A, Büchler P, Farron A (2006) Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty. J Shoulder Elbow Surg 15(4):515–520CrossRefPubMedGoogle Scholar
  37. 37.
    Terrier A, Aeberhard M, Michellod Y, Mullhaupt P, Gillet D, Farron A, Piokletti DP (2010) A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Med Eng Phys 32(9):1050–1056CrossRefPubMedGoogle Scholar
  38. 38.
    Throckmorton TW, Zarkadas PC, Sperling JW, Cofield RH (2010) Pegged versus keeled glenoid components in total shoulder arthroplasty. J Shoulder Elbow Surg 19(5):726–733CrossRefPubMedGoogle Scholar
  39. 39.
    van der Helm FC (1994) Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech 27(5):527–550CrossRefPubMedGoogle Scholar
  40. 40.
    Viceconti M, Olsen S, Nolte LP, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon) 20(5):451–454Google Scholar
  41. 41.
    Walch G, Young AA, Melis B, Gazielly D, Loew M, Boileau P (2011) Results of a convex-back cemented keeled glenoid component in primary osteoarthritis: multicenter study with a follow-up greater than 5 years. J Shoulder Elbow Surg 20(3):385–394CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Werner Pomwenger
    • 1
  • Karl Entacher
    • 1
  • Herbert Resch
    • 2
  • Peter Schuller-Götzburg
    • 3
  1. 1.Department of Information Technology and Systems ManagementSalzburg University of Applied SciencesPuch/SalzburgAustria
  2. 2.Department of Trauma SurgerySalzburg University HospitalSalzburgAustria
  3. 3.Research Program in Prosthetics, Biomechanics and BiomaterialsParacelsus Medical UniversitySalzburgAustria

Personalised recommendations