Advertisement

Medical & Biological Engineering & Computing

, Volume 53, Issue 8, pp 699–712 | Cite as

Time-varying signal analysis to detect high-altitude periodic breathing in climbers ascending to extreme altitude

  • A. GardeEmail author
  • B. F. Giraldo
  • R. Jané
  • T. D. Latshang
  • A. J. Turk
  • T. Hess
  • M. M. Bosch
  • D. Barthelmes
  • T. M. Merz
  • J. Pichler Hefti
  • O. D. Schoch
  • K. E. Bloch
Original Article

Abstract

This work investigates the performance of cardiorespiratory analysis detecting periodic breathing (PB) in chest wall recordings in mountaineers climbing to extreme altitude. The breathing patterns of 34 mountaineers were monitored unobtrusively by inductance plethysmography, ECG and pulse oximetry using a portable recorder during climbs at altitudes between 4497 and 7546 m on Mt. Muztagh Ata. The minute ventilation (VE) and heart rate (HR) signals were studied, to identify visually scored PB, applying time-varying spectral, coherence and entropy analysis. In 411 climbing periods, 30–120 min in duration, high values of mean power (MPVE) and slope (MSlopeVE) of the modulation frequency band of VE, accurately identified PB, with an area under the ROC curve of 88 and 89 %, respectively. Prolonged stay at altitude was associated with an increase in PB. During PB episodes, higher peak power of ventilatory (MPVE) and cardiac (MP LF HR ) oscillations and cardiorespiratory coherence (MP LF Coher ), but reduced ventilation entropy (SampEnVE), was observed. Therefore, the characterization of cardiorespiratory dynamics by the analysis of VE and HR signals accurately identifies PB and effects of altitude acclimatization, providing promising tools for investigating physiologic effects of environmental exposures and diseases.

Keywords

High-altitude periodic breathing Cardiorespiratory characterization Time-varying spectral analysis Acclimatization Hypoxia 

Notes

Acknowledgments

This work was supported by an international cooperation Grant of the Swiss National Science Foundation (SNSF), a mobility grant of the CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) and by the Ministerio de Economía y Competitividad from Spanish Government under Grant TEC2010-21703-C03-01, and by Grants from the Lung Ligue of Zurich, Switzerland.

References

  1. 1.
    Bloch KE, Barandun J, Sackner MA (1995) Effect of mouthpiece breathing on cardiorespiratory response to intense exercise. Am J Respir Crit Care Med 151:1087–1092PubMedGoogle Scholar
  2. 2.
    Bloch K, Myers J, Senn O (2006) Sample entropy as a metric to quantify periodic breathing during high altitude climbing. Eur Respir J 28(suppl):195sGoogle Scholar
  3. 3.
    Bloch KE, Turk AJ, Maggiorini M et al (2009) Effect of ascent protocol on acute mountain sickness and success at Muztagh Ata, 7546 m. High Alt Med Biol 10:25–32PubMedCrossRefGoogle Scholar
  4. 4.
    Bloch KE, Latshang TD, Turk AJ et al (2010) Nocturnal periodic breathing during acclimatization at very high altitude at Mount Muztagh Ata (7,546 m). Am J Respir Crit Care Med 182:562–568PubMedCrossRefGoogle Scholar
  5. 5.
    Brack T (2003) Cheyne-Stokes respiration in patients with congestive heart failure. Swiss Med Wkly 133:605–610PubMedGoogle Scholar
  6. 6.
    Brack T, Thüer I, Clarenbach CFC et al (2007) Daytime Cheyne-Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality. Chest 132:1463–1471PubMedCrossRefGoogle Scholar
  7. 7.
    Brüllmann G, Thurnheer R, Bloch E et al (2010) Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration. Respiration 79:112–120PubMedCrossRefGoogle Scholar
  8. 8.
    Chen X, Solomon I, Chon K (2005) Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. Proc IEEE Conf Eng Med Biol 4:4212–4215Google Scholar
  9. 9.
    Clarenbach CF, Senn O, Bloch KE (2003) A portable inductance plethysmograph for monitoring ventilation in unrestrained subjects. Eur Respir J 22:408sCrossRefGoogle Scholar
  10. 10.
    Dempsey JA (2005) Crossing the apnoeic threshold: causes and consequences. Exp Physiol 90:13–24PubMedCrossRefGoogle Scholar
  11. 11.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90:47–112PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fowler AC (2003) Periodic breathing at high altitude. J Math Appl Med Biol 19:293–313CrossRefGoogle Scholar
  13. 13.
    Gallagher S, Hackett PH (2004) High-altitude illness. Emerg Med Clin N Am 22:329–355, viiiGoogle Scholar
  14. 14.
    Garde A, Giraldo BF, Jané R, Sornmo L (2009) Time-varying respiratory pattern characterization in chronic heart failure patients and healthy subjects. Proc. IEEE Conf. Eng. Med. Biol. Minneapolis, Minnesota, USA, pp 4007–4010Google Scholar
  15. 15.
    Garde A, Sörnmo L, Jané R, Giraldo BF (2010) Breathing pattern characterization in chronic heart failure patients using the respiratory flow signal. Ann Biomed Eng 38:3572–3580PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Garde A, Sörnmo L, Jané R, Giraldo BF (2010) Correntropy-based spectral characterization of respiratory patterns in patients with chronic heart failure. IEEE Trans Biomed Eng 57:1964–1972PubMedCrossRefGoogle Scholar
  17. 17.
    Garde A, Sornmo L, Jane R, Giraldo BF (2010) Correntropy-based nonlinearity test applied to patients with chronic heart failure. Proc IEEE Conf Eng Med Biol 2010:2399–2402Google Scholar
  18. 18.
    Garde A, Giraldo BF, Jane R et al (2012) Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal. Proc IEEE Conf Eng Med Biol 2012:707–710Google Scholar
  19. 19.
    Indic P, Bloch-Salisbury E, Bednarek F et al (2011) Assessment of cardio-respiratory interactions in preterm infants by bivariate autoregressive modeling and surrogate data analysis. Early Hum Dev 87:477–487PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Khoo MC, Kronauer RE, Strohl KP, Slutsky AS (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53:644–659PubMedGoogle Scholar
  21. 21.
    Kohler M, Kriemler S, Wilhelm EM et al (2008) Children at high altitude have less nocturnal periodic breathing than adults. Eur Respir J 32:189–197PubMedCrossRefGoogle Scholar
  22. 22.
    Latshang TD, Turk J, Hess T et al (2013) Acclimatization improves submaximal exercise economy at 5533 m. Scand J Med Sci Sports 23(4):458–467PubMedCrossRefGoogle Scholar
  23. 23.
    Latshang TD, Cascio CM, Lo GrimmM et al (2013) Are nocturnal breathing, sleep and cognitive performance impaired at moderate altitude (1630–2590 m)? Sleep 36:1969–1976PubMedCentralPubMedGoogle Scholar
  24. 24.
    Lipsitz LA, Hashimoto F, Lubowsky LP et al (1995) Heart rate and respiratory rhythm dynamics on ascent to high altitude. Br Heart J 74:390–396PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Malik M, Bigger JT, Camm AJ et al (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Hear J 17:354–381CrossRefGoogle Scholar
  26. 26.
    Mortara A, Sleight P, Pinna GD et al (1997) Abnormal awake respiratory patterns are common in chronic heart failure and may prevent evaluation of autonomic tone by measures of heart rate variability. Circulation 96:246–252PubMedCrossRefGoogle Scholar
  27. 27.
    Nussbaumer-Ochsner Y, Schuepfer N, Siebenmann C, Maggiorini MBK (2011) High altitude sleep disturbances monitored by actigraphy and polysomnography. High Alt Med Biol 12(3):229–236PubMedCrossRefGoogle Scholar
  28. 28.
    Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C et al (2012) Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep 35:419–423PubMedCentralPubMedGoogle Scholar
  29. 29.
    Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol Hear Circ Physiol 266:H1643–H1656Google Scholar
  30. 30.
    Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–471CrossRefGoogle Scholar
  31. 31.
    Sackner MA, Watson H, Belsito AS et al (1989) Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol 66:410–420PubMedGoogle Scholar
  32. 32.
    San T, Polat S, Cingi C et al (2013) Effects of high altitude on sleep and respiratory system and theirs adaptations. Sci World J 2013:241569. doi: 10.1155/2013/241569 CrossRefGoogle Scholar
  33. 33.
    Sleep Medicine Task Force AA (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22:667–689Google Scholar
  34. 34.
    Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Elsevier/Academic Press, AmsterdamGoogle Scholar
  35. 35.
    Szollosi I, Krum H, Kaye D, Naughton MT (2007) Sleep apnea in heart failure increases heart rate variability and sympathetic dominance. Sleep 11:1509–1514Google Scholar
  36. 36.
    White LB, Boashash B (1990) Cross spectral analysis of nonstationary processes. IEEE Trans Inf Theory 36:830–835CrossRefGoogle Scholar
  37. 37.
    Wolf MB, Garner RP (2009) Disequilibrium between alveolar and end-pulmonary-capillary O2 tension in altitude hypoxia and respiratory disease: an update of a mathematical model of human respiration at altitude. Ann Biomed Eng 37:1818–1826PubMedCrossRefGoogle Scholar
  38. 38.
    Nussbaumer-Ochsner Y, Bloch KE (2014) Sleep. In: Swenson ER, Bärtsch P (eds) High altitude. Human adaptation to hypoxia. Springer, New York, pp 325–335Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • A. Garde
    • 1
    Email author
  • B. F. Giraldo
    • 1
  • R. Jané
    • 1
  • T. D. Latshang
    • 2
  • A. J. Turk
    • 3
  • T. Hess
    • 4
  • M. M. Bosch
    • 5
  • D. Barthelmes
    • 5
  • T. M. Merz
    • 6
  • J. Pichler Hefti
    • 7
  • O. D. Schoch
    • 8
  • K. E. Bloch
    • 2
  1. 1.Biomedical Signal Processing and Interpretation (BIOSPIN) Group, Department of ESAII, Institut de Bioenginyeria de Catalunya (IBEC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Pulmonary DivisionUniversity Hospital of ZurichZurichSwitzerland
  3. 3.High Altitude Clinic WaldWaldSwitzerland
  4. 4.Pulmonary DivisionCantonal Hospital WinterthurWinterthurSwitzerland
  5. 5.Department of OphthalmologyUniversity Hospital ZurichZurichSwitzerland
  6. 6.Intensive Care UnitUniversity Hospital of BerneBerneSwitzerland
  7. 7.Pulmonary DivisionUniversity Hospital of BerneBerneSwitzerland
  8. 8.Pulmonary DivisionCantonal Hospital St. GallenSt. GallenSwitzerland

Personalised recommendations