Advertisement

Medical & Biological Engineering & Computing

, Volume 53, Issue 4, pp 371–379 | Cite as

Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME

  • Paweł MaciejaszEmail author
  • Jordi Badia
  • Tim Boretius
  • David Andreu
  • Thomas Stieglitz
  • Winnie Jensen
  • Xavier Navarro
  • David Guiraud
Original Article

Abstract

The number of devices for electrical stimulation of nerve fibres implanted worldwide for medical applications is constantly increasing. Stimulation charge is one of the most important parameters of stimulation. High stimulation charge may cause tissue and electrode damage and also compromise the battery life of the electrical stimulators. Therefore, the objective of minimizing stimulation charge is an important issue. Delaying the second phase of biphasic stimulation waveform may decrease the charge required for fibre activation, but its impact on stimulation selectivity is not known. This information is particularly relevant when transverse intrafascicular multichannel electrode (TIME) is used, since it has been designed to provide for high selectivity. In this in vivo study, the rat sciatic nerve was electrically stimulated using monopolar and bipolar configurations with TIME. The results demonstrated that the inclusion of a 100-μs delay between the cathodic and the anodic phase of the stimulus allows to reduce charge requirements by around 30 %, while only slightly affecting stimulation selectivity. This study shows that adding a delay to the typical stimulation waveform significantly (\(P < 0.001\)) reduces the charge required for nerve fibres activation. Therefore, waveforms with the delayed discharge phase are more suitable for electrical stimulation of nerve fibres.

Keywords

Functional electrical stimulation Multi-electrode arrays Neural interfaces Stimulation selectivity Delayed discharge 

Notes

Acknowledgments

We would like to thank Mr. Guillaume Souquet from MXM Axonic for developing low-level control software of the Stim’nD stimulator, Mr. François Bonnetblanc from the DEMAR team, INRIA, for help with statistical analysis and Ms. Chloé Picq from MXM Axonic for English proof reading.

Supplementary material

11517_2015_1244_MOESM1_ESM.pdf (276 kb)
Supplementary material 1 (pdf 276 KB)

References

  1. 1.
    Abdi H (2007) The Bonferonni and Šídák corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 103–107Google Scholar
  2. 2.
    Arle JE (2011) The neuromodulation approach. In: Arle JE, Shils JL (eds) Essential neuromodulation. Academic Press, Waltham, pp 1–16CrossRefGoogle Scholar
  3. 3.
    Andreu D, Guiraud D, Souquet G (2009) A distributed architecture for activating the peripheral nervous system. J Neural Eng 6:026001CrossRefPubMedGoogle Scholar
  4. 4.
    Badia J, Pascual-Font A, Vivó M, Udina E, Navarro X (2010) Topographical distribution of motor fascicles in the sciatic–tibial nerve of the rat. Muscle Nerve 42:192–201CrossRefPubMedGoogle Scholar
  5. 5.
    Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X (2011) Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicle. J Neural Eng 8:036023CrossRefPubMedGoogle Scholar
  6. 6.
    Badia J, Boretius T, Pascual-Font A, Udina E, Stieglitz T, Navarro X (2011) Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Trans Biomed Eng 58:2324–2332CrossRefGoogle Scholar
  7. 7.
    Del Valle J, Navarro X (2013) Interfaces with the peripheral nerve for the control of neuroprostheses. Int Rev Neurobiol 109:63–83CrossRefPubMedGoogle Scholar
  8. 8.
    Gorman PH, Mortimer JT (1983) The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng 30:407–14CrossRefPubMedGoogle Scholar
  9. 9.
    Grill WM, Mortimer JT (1995) Stimulus waveforms for selective neural stimulation. IEEE Trans Biomed Eng 14:375–85Google Scholar
  10. 10.
    Guiraud D, Stieglitz T, Taroni G, Divoux JL (2006) Original electronic design to perform epimysial and neural stimulation in paraplegia. J Neural Eng 3:276–86CrossRefPubMedGoogle Scholar
  11. 11.
    Hofmann L, Ebert M, Tass PA, Hauptmann C (2011) Modified pulse shapes for effective neural stimulation. Front Neuroeng 4:9CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:6570Google Scholar
  13. 13.
    Kundu A, Harreby K, Yoshida K, Boretius T, Stieglitz T, Jensen W (2014) Stimulation selectivity of the thin-film longitudinal intrafascicular electrode (tfLIFE) and the transverse intrafascicular multi-channel electrode (TIME) in the large nerve animal model. IEEE Trans Neural Syst Rehabil Eng 22:400–410CrossRefPubMedGoogle Scholar
  14. 14.
    Maciejasz P, Badia J, Boretius T, Harreby K, Jensen W, Stieglitz T, Navarro X, Guiraud D (2013) Comparison of stimulation selectivity in monopolar and bipolar configuration using the transversal intrafascicular multichannel electrode (TIME)—preliminary results. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation, vol 1., Biosystems and BioroboticsSpringer, Berlin, pp 79–83CrossRefGoogle Scholar
  15. 15.
    Marin J, De Lannoy G, Delbeke J (2009) When can we recover charges with a biphasic charge balanced stimulation pulse? In: Proceedings of the international functional electrical stimulation society conference, Seoul, Korea, pp 55–57Google Scholar
  16. 16.
    Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–98CrossRefPubMedGoogle Scholar
  17. 17.
    Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK (2006) Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res 215:4755CrossRefGoogle Scholar
  18. 18.
    Prodanov D, Marani E, Holsheimer J (2003) Functional electric stimulation for sensory and motor functions: progress and problems. Biomed Rev 14:23–50CrossRefGoogle Scholar
  19. 19.
    Raspopovic S, Capogrosso M, Badia J, Navarro X, Micera S (2012) Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans Neural Syst Rehabil Eng 20:395–404CrossRefPubMedGoogle Scholar
  20. 20.
    Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33:974–77CrossRefPubMedGoogle Scholar
  21. 21.
    Schultz AE, Kuiken TA (2011) Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PMR 3:55–67CrossRefGoogle Scholar
  22. 22.
    Shepherd RK, Javel E (1999) Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear Res 130:17188CrossRefGoogle Scholar
  23. 23.
    Stieglitz T, Boretius T, Navarro X, Badia J, Guiraud D, Divoux JL, Micera S, Rossini PM, Yoshida K, Harreby KR, Kundu A, Jensen W (2012) Development of a neurotechnological system for relieving phantom limb pain using transverse intrafascicular electrodes (TIME). Biomed Tech (Berl) 57:457–465Google Scholar
  24. 24.
    van den Honert C, Mortimer JT (1979) The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng 7:117–25CrossRefPubMedGoogle Scholar
  25. 25.
    Veraart C, Grill WM, Mortimer JT (1993) Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans Biomed Eng 40:640–53CrossRefPubMedGoogle Scholar
  26. 26.
    Weitz AC, Behrend MR, Ahuja AK, Christopher P, Wei J, Wuyyuru V, Patel U, Greenberg RJ, Humayun MS, Chow RH, Weiland JD (2014) Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses. J Neural Eng 11:016007CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Wright SP (1992) Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • Paweł Maciejasz
    • 1
    • 2
    Email author
  • Jordi Badia
    • 3
  • Tim Boretius
    • 4
    • 5
  • David Andreu
    • 7
  • Thomas Stieglitz
    • 4
  • Winnie Jensen
    • 6
  • Xavier Navarro
    • 3
  • David Guiraud
    • 7
  1. 1.DEMAR Team, LIRMM, INRIAUniversity of Montpellier 2MontpellierFrance
  2. 2.AxonicSophia AntipolisFrance
  3. 3.Department of Cell Biology, Physiology and Immunology and Institute of NeurosciencesUniversitat Autónoma de Barcelona and CIBERNEDBellaterraSpain
  4. 4.Laboratory for Biomedical Microtechnology, IMTEK-Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  5. 5.University of New South WalesSydneyAustralia
  6. 6.Department of Health Science and Technology, Center for Sensory-Motor InteractionAalborg UniversityAalborgDenmark
  7. 7.DEMAR Team, LIRMM, INRIA, CNRSUniversity of Montpellier 2MontpellierFrance

Personalised recommendations