Medical & Biological Engineering & Computing

, Volume 53, Issue 4, pp 361–370

Improved robust T-wave alternans detectors

  • O. Meste
  • D. Janusek
  • S. Karczmarewicz
  • A. Przybylski
  • M. Kania
  • A. Maciag
  • R. Maniewski
Original Article

Abstract

New statistical and spectral detectors, the modified matched pairs t test, the extended spectral method and the modified spectral method, were proposed for T-wave alternans (TWA) detection gaining robustness according to trend and single-frequency interferences. They were compared to classic detectors such as matched pairs t test, unpaired t test, spectral method, generalized likelihood ratio test and estimated TWA amplitude within a simulation framework and applied to real data. The optimal detection threshold was selected by using a full Monte-Carlo simulation where signals, with and without alternans episodes, were corrupted by Gaussian noise with different power and single-frequency interferences with different tones. All the combinations of noise and frequency were selected and repeated 500 times in order to compute probability of detection (\(P_{\mathrm{d}}\)) and the false alarm probability (\(P_{\mathrm{fa}}\)), providing ROC curves. The study group consisted of 50 patients with implantable cardioverter-defibrillator (age: \(55.3 \pm 16.4\); LVEF: \(42.8 \pm 15.5\)), who were paced (ventricular pacing) at 100 bpm. Two-minute recordings were analyzed. The XYZ orthogonal lead system was used. The best performance was reached by using the modified matched pairs t test (in comparison with the spectral method and other reference methods).

Keywords

T-wave alternans Detector Electrocardiography Ventricular arrhythmia 

References

  1. 1.
    El-Sherif N, Khan A, Savarese J, Turitto G (2010) Pathophysiology, risk stratification, and management of sudden cardiac death in coronary artery disease. Cardiol J 17(1):4PubMedGoogle Scholar
  2. 2.
    Christiaans I, Van Engelen K, Van Langen IM, Birnie E, Bonsel GJ, Elliott PM et al (2010) Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 12(3):313–321CrossRefPubMedGoogle Scholar
  3. 3.
    Sastry AP, Narayan SM (2010) Advanced signal processing applications of the ECG: T-wave alternans, heart rate variability, and the signal averaged ECG. In: Goldberger JJ, Ng J (eds) Practical signal and image processing in clinical cardiology. Spinger, London, pp 347–378CrossRefGoogle Scholar
  4. 4.
    Toure A, Cabo C (2012) Effect of heterogeneities in the cellular microstructure on propagation of the cardiac action potential. Med Biol Eng Comput 50(8):813–825CrossRefPubMedGoogle Scholar
  5. 5.
    Selvaraj RJ, Picton P, Nanthakumar K, Mak S, Chauhan VS (2007) Endocardial and epicardial repolarization alternans in human cardiomyopathy: evidence for spatiotemporal heterogeneity and correlation with body surface T-wave alternans. J Am Coll Cardiol 49(3):338–346CrossRefPubMedGoogle Scholar
  6. 6.
    Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99(10):1385–1394CrossRefPubMedGoogle Scholar
  7. 7.
    Qu Z, Xie Y, Garfinkel A, Weiss JN (2010) T-wave alternans and arrhythmogenesis in cardiac diseases. Front Physiol 1(154):1–15Google Scholar
  8. 8.
    Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH et al (2011) Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility-consensus guideline by international society for Holter and noninvasive electrocardiology. J Am Coll Cardiol 58(13):1309–1324CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Naseri H, Pourkhajeh H, Homaeinezhad M (2013) A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans. Med Biol Eng Comput 51(9):1031–1042CrossRefPubMedGoogle Scholar
  10. 10.
    Arini PD, Baglivo FH, Martinez JP, Laguna P (2014) Evaluation of ventricular repolarization dispersion during acute myocardial ischemia: spatial and temporal ECG indices. Med Biol Eng Comput 52:375–391CrossRefPubMedGoogle Scholar
  11. 11.
    Amit G, Rosenbaum DS, Super DM, Costantini O (2010) Microvolt T-wave alternans and electrophysiologic testing predict distinct arrhythmia substrates: implications for identifying patients at risk for sudden cardiac death. Heart Rhythm 7(6):763–768CrossRefPubMedGoogle Scholar
  12. 12.
    Nearing BD, Huang AH, Verrier RL (2002) Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92:541–549CrossRefPubMedGoogle Scholar
  13. 13.
    Ghanem RN, Zhou X (2010) Detection of T-Wave alternans phase reversal for arrhythmia prediction and sudden cardiac death risk stratification. Google PatentsGoogle Scholar
  14. 14.
    Narayan SM, Smith JM, Schechtman KB, Lindsay BD, Cain ME (2005) T-wave alternans phase following ventricular extrasystoles predicts arrhythmia-free survival. Heart Rhythm 2(3):234–241CrossRefPubMedGoogle Scholar
  15. 15.
    Janusek D, Kania M, Zaczek R, Zavala-Fernandez H, Maniewski R (2014) A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration. Comput Methods Programs Biomed 114(1):102–108CrossRefPubMedGoogle Scholar
  16. 16.
    Takasugi N, Kubota T, Nishigaki K, Verrier RL, Kawasaki M, Takasugi M et al (2011) Should T-wave alternans magnitude be corrected with T-wave amplitude in the ultra-short-term prediction of life-threatening cardiac arrhythmias? Europace 13(10):1512–1513CrossRefGoogle Scholar
  17. 17.
    Janusek D, Fereniec M, Kania M, Kepski R, Maniewski R (2007) Spatial distribution of T-wave alternans. In: Computers in cardiology. IEEE, pp 721–723Google Scholar
  18. 18.
    Nakai K, Takahashi S, Suzuki A, Hagiwara N, Futagawa K, Shoda M et al (2011) Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vector-projected body surface mapping. Heart Vessels 26(2):160–167CrossRefPubMedGoogle Scholar
  19. 19.
    Minkkinen M, Kahonen M, Viik J, Nikus K, Lehtimaki T, Lehtinen R et al (2009) Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish Cardiovascular Study. J Cardiovasc Electrophysiol 20(4):408–415CrossRefPubMedGoogle Scholar
  20. 20.
    Dorenkamp M, Breitwieser C, Morguet AJ, Seegers J, Behrens S, Zabel M (2011) T-wave alternans testing in pacemaker patients: comparison of pacing modes and long-term prognostic relevance. Pacing Clin Electrophysiol 34(9):1054–1062CrossRefPubMedGoogle Scholar
  21. 21.
    Shusterman V, London B (2012) Surge of T-wave alternans in the absence of heart-rate acceleration: A new predictor of sustained ventricular tachyarrhythmias in patients with low ejection fraction? Heart Rhythm 9(11):1920CrossRefGoogle Scholar
  22. 22.
    Li-na R, Xin-hui F, Li-dong R, Jian G, Yong-quan W, Guo-xian Q (2012) Ambulatory ECG-based T-wave alternans and heart rate turbulence can predict cardiac mortality in patients with myocardial infarction with or without diabetes mellitus. Cardiovasc Diabetol 11:104CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Sakaki K, Ikeda T, Miwa Y, Miyakoshi M, Abe A, Tsukada T et al (2009) Time-domain T-wave alternans measured from Holter electrocardiograms predicts cardiac mortality in patients with left ventricular dysfunction: a prospective study. Heart Rhythm 6(3):332–337CrossRefPubMedGoogle Scholar
  24. 24.
    Janusek D, Kania M, Zaczek R, Zavala-Fernandez H, Zbiec A, Opolski G et al (2011) Application of wavelet based denoising for T-wave alternans analysis in high resolution ECG maps. Meas Sci Rev 11(6):181–184CrossRefGoogle Scholar
  25. 25.
    Martinez JP, Olmos S (2002) A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in cardiology. IEEE, pp 677–680Google Scholar
  26. 26.
    Meste O, Janusek D, Maniewski R (2007) Analysis of the T wave alternans phenomenon with ECG amplitude modulation and baseline wander. In: Computers in cardiology. IEEE, pp 565–568Google Scholar
  27. 27.
    Nearing BD, Huang AH, Verrier RL (1991) Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004):437CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330(4):235–241CrossRefPubMedGoogle Scholar
  29. 29.
    Zareba W, Badilini F, Moss AJ (1995) Automatic detection of non-visible T-wave alternans from three-channel Holter recordings. J Am Coll Cardiol 25(2):409ACrossRefGoogle Scholar
  30. 30.
    Janusek D, Pawlowski Z, Maniewski R (2007) Evaluation of the T-wave alternans detection methods: a simulation study. Anatol J Cardiol 7(Suppl 1):116–119Google Scholar
  31. 31.
    Srikanth T, Lin D, Kanaan N, Gu H (2002) Presence of T-wave alternans in the statistical context. A new approach to low amplitude alternans measurement. In: Computers in cardiology. IEEEGoogle Scholar
  32. 32.
    Martinez JP, Olmos S (2005) Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52(4):599–613CrossRefPubMedGoogle Scholar
  33. 33.
    Meste O, Janusek D, Kania M (2012) A new robust T wave alternans detector and its threshold optimization. A new robust T wave alternans detector and its threshold optimization. In: Computers in cardiology. IEEE, pp 425–428Google Scholar
  34. 34.
    Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 3:230–6CrossRefGoogle Scholar
  35. 35.
    Burattini L, Zareba W, Rashba EJ, Couderc JP, Konecki J, Moss AJ (1998) ECG features of microvolt T-wave alternans in coronary artery disease and long QT syndrome patients. J Electrocardiol 31(Suppl):114–120CrossRefPubMedGoogle Scholar
  36. 36.
    Meyer C, Keiser H (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10(5):459–470CrossRefPubMedGoogle Scholar
  37. 37.
    Bazett H (2006) An analysis of the time-relations of electrocradiograms. Ann Noninvasive Electrocardiol 2(2):177–194CrossRefGoogle Scholar
  38. 38.
    DeLong E, DeLong D, Clarke-Pearson D (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics 44(3):837–845CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2015

Authors and Affiliations

  • O. Meste
    • 1
  • D. Janusek
    • 2
  • S. Karczmarewicz
    • 3
  • A. Przybylski
    • 4
  • M. Kania
    • 2
  • A. Maciag
    • 4
  • R. Maniewski
    • 2
  1. 1.Laboratoire I3S UNS-CNRS UMR7172Université de Nice-Sophia AntipolisSophia Antipolis CedexFrance
  2. 2.Nalecz Institute of Biocybernetics and Biomedical Engineering PASWarsawPoland
  3. 3.Warsaw Education Center CVG Medtronic PolandWarsawPoland
  4. 4.Cardiac Arrhythmias DepartmentNational Institute of CardiologyWarsawPoland

Personalised recommendations