Medical & Biological Engineering & Computing

, Volume 53, Issue 4, pp 299–308 | Cite as

The influence of intraluminal thrombus on noninvasive abdominal aortic aneurysm wall distensibility measurement

  • Eleni Metaxa
  • Nikolaos Kontopodis
  • Vasileios Vavourakis
  • Konstantinos Tzirakis
  • Christos V. Ioannou
  • Yannis Papaharilaou
Original Article

Abstract

Abdominal aortic aneurysm wall distensibility can be estimated by measuring pulse pressure and the corresponding sac volume change, which can be obtained by measuring wall displacement. This approach, however, may introduce error if the role of thrombus in assisting the wall in bearing the pulse pressure loading is neglected. Our aim was to introduce a methodology for evaluating and potentially correcting this error in estimating distensibility. Electrocardiogram-gated computed tomography images of eleven patients were obtained, and the volume change between diastole and systole was measured. Using finite element procedures, we determined the equivalent pulse pressure loading that should be applied to the wall of a model where thrombus was digitally removed, to yield the same sac volumetric increase caused by applying the luminal pulse pressure to the model with thrombus. The equivalent instead of the measured pulse pressure was used in the distensibility expression. For a relative volumetric thrombus deposition (VILT) of 50 %, a 62 % distensibility underestimation resulted when thrombus role was neglected. A strong linear correlation was observed between distensibility underestimation and VILT. To assess the potential value of noninvasive wall distensibility measurement in rupture risk stratification, the role of thrombus on wall loading should be further investigated.

Keywords

Arterial stiffness Vascular biomechanics 4D CT Rupture risk Young’s modulus 

References

  1. 1.
    Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC (1997) Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 25:916–926CrossRefPubMedGoogle Scholar
  2. 2.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112CrossRefPubMedGoogle Scholar
  3. 3.
    Ashton JH, Vande Geest JP, Simon BR, Haskett DG (2009) Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech 42:197–201CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Boschetti F, Di Martino EM, Giota G (2007) A poroviscoelastic model of intraluminal thrombus from abdominal aortic aneurysms. In: 2007 Summer bioengineering conference, Keystone COGoogle Scholar
  5. 5.
    Breeuwer M, de Putter S, Kose U, Speelman L, Visser K, Gerritsen F, Hoogeveen R, Krams R, van den Bosch H, Buth J, Gunther T, Wolters B, van Dam E, van de Vosse F (2008) Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comput 46:1085–1095CrossRefPubMedGoogle Scholar
  6. 6.
    Collet JP, Shuman H, Ledger RE, Lee S, Weisel JW (2005) The elasticity of an individual fibrin fiber in a clot. Proc Natl Acad Sci U S A 102:9133–9137CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15:290–299CrossRefPubMedGoogle Scholar
  8. 8.
    Di Martino ES, Bohra A, Van de Geest JP, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43:570–576 (discussion 576)CrossRefPubMedGoogle Scholar
  9. 9.
    Doyle BJ, Callanan A, McGloughlin TM (2007) A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng Online 6:38CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Gasser TC, Gorgulu G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48:179–188CrossRefPubMedGoogle Scholar
  11. 11.
    Gasser TC, Martufi G, Auer M, Folkesson M, Swedenborg J (2010) Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Ann Biomed Eng 38:371–379CrossRefPubMedGoogle Scholar
  12. 12.
    Govindjee S, Mihalic P (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43:821–838CrossRefGoogle Scholar
  13. 13.
    He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20:6–13CrossRefPubMedGoogle Scholar
  14. 14.
    Helderman F, Manoch IJ, Breeuwer M, Kose U, Schouten O, van Sambeek MR, Poldermans D, Pattynama PT, Wisselink W, van der Steen AF, Krams R (2008) A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness. Med Biol Eng Comput 46:1121–1127CrossRefPubMedGoogle Scholar
  15. 15.
    Hellenthal FA, Geenen IL, Teijink JA, Heeneman S, Schurink GW (2009) Histological features of human abdominal aortic aneurysm are not related to clinical characteristics. Cardiovasc Pathol 18:286–293CrossRefPubMedGoogle Scholar
  16. 16.
    Hinnen JW, Koning OH, Visser MJ, Van Bockel HJ (2005) Effect of intraluminal thrombus on pressure transmission in the abdominal aortic aneurysm. J Vasc Surg 42:1176–1182CrossRefPubMedGoogle Scholar
  17. 17.
    Kirk B, Peterson J, Stogner R, Carey G (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng with Comput 22:237–254CrossRefGoogle Scholar
  18. 18.
    Kontopodis N, Metaxa E, Pagonidis K, Ioannou C, Papaharilaou Y (2013) Deformation and distensibility distribution along the abdominal aorta in the presence of aneurysmal dilatation. J Cardiovasc Surg (Torino) (in press)Google Scholar
  19. 19.
    Li ZY, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47:928–935CrossRefPubMedGoogle Scholar
  20. 20.
    MacSweeney ST (1999) Mechanical properties of abdominal aortic aneurysm and prediction of risk of rupture. Cardiovasc Surg 7:158–159CrossRefPubMedGoogle Scholar
  21. 21.
    Merkx MA, van’t Veer M, Speelman L, Breeuwer M, Buth J, van de Vosse FN (2009) Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. J Biomech 42:2369–2373CrossRefPubMedGoogle Scholar
  22. 22.
    Meyer CA, Guivier-Curien C, Moore JE Jr (2010) Trans-thrombus blood pressure effects in abdominal aortic aneurysms. J Biomech Eng 132:071005CrossRefPubMedGoogle Scholar
  23. 23.
    Molacek J, Baxa J, Houdek K, Treska V, Ferda J (2011) Assessment of abdominal aortic aneurysm wall distensibility with electrocardiography-gated computed tomography. Ann Vasc Surg 25:1036–1042CrossRefPubMedGoogle Scholar
  24. 24.
    Molony DS, Callanan A, Kavanagh EG, Walsh MT, McGloughlin TM (2009) Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft. Biomed Eng Online 8:24CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Mower WR, Quinones WJ, Gambhir SS (1997) Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg 26:602–608CrossRefPubMedGoogle Scholar
  26. 26.
    Polzer S, Gasser TC, Markert B, Bursa J, Skacel P (2012) Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online 11:62CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482CrossRefPubMedGoogle Scholar
  28. 28.
    Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA (2013) The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J Biomech Eng 135:81010CrossRefPubMedGoogle Scholar
  29. 29.
    Schurink GW, van Baalen JM, Visser MJ, van Bockel JH (2000) Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg 31:501–506CrossRefPubMedGoogle Scholar
  30. 30.
    Sonesson B, Hansen F, Lanne T (1997) Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta? J Vasc Surg 26:247–254CrossRefPubMedGoogle Scholar
  31. 31.
    Speelman L, Schurink GW, Bosboom EM, Buth J, Breeuwer M, van de Vosse FN, Jacobs MH (2010) The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg 51:19–26CrossRefPubMedGoogle Scholar
  32. 32.
    Taubin G (1995) Curve and surface smoothing without shrinkage. In: IEEE Computer Society proceedings of the fifth international conference on computer vision (ICCV ‘95), p 852Google Scholar
  33. 33.
    Thubrikar MJ, Robicsek F, Labrosse M, Chervenkoff V, Fowler BL (2003) Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg (Torino) 44:67–77Google Scholar
  34. 34.
    van’t Veer M, Buth J, Merkx M, Tonino P, van den Bosch H, Pijls N, van de Vosse F (2008) Biomechanical properties of abdominal aortic aneurysms assessed by simultaneously measured pressure and volume changes in humans. J Vasc Surg 48:1401–1407CrossRefGoogle Scholar
  35. 35.
    van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GW, Buth J, van de Vosse FN (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7:127–137CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Vavourakis V, Papaharilaou Y, Ekaterinaris JA (2011) Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J Biomech 44:2453–2460CrossRefPubMedGoogle Scholar
  37. 37.
    Wang DH, Makaroun M, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123:536–539CrossRefPubMedGoogle Scholar
  38. 38.
    Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604CrossRefPubMedGoogle Scholar
  39. 39.
    Wilson JS, Virag L, Di Achille P, Karsaj I, Humphrey JD (2013) Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng 135:021011CrossRefPubMedGoogle Scholar
  40. 40.
    Wilson KA, Lee AJ, Lee AJ, Hoskins PR, Fowkes FG, Ruckley CV, Bradbury AW (2003) The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J Vasc Surg 37:112–117CrossRefPubMedGoogle Scholar
  41. 41.
    Xenos M, Alemu Y, Zamfir D, Einav S, Ricotta JJ, Labropoulos N, Tassiopoulos A, Bluestein D (2010) The effect of angulation in abdominal aortic aneurysms: fluid–structure interaction simulations of idealized geometries. Med Biol Eng Comput 48:1175–1190CrossRefPubMedGoogle Scholar
  42. 42.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Eleni Metaxa
    • 1
  • Nikolaos Kontopodis
    • 2
  • Vasileios Vavourakis
    • 3
  • Konstantinos Tzirakis
    • 1
  • Christos V. Ioannou
    • 2
  • Yannis Papaharilaou
    • 1
  1. 1.Foundation for Research and Technology–HellasInstitute of Applied and Computational MathematicsHeraklionGreece
  2. 2.Department of Vascular Surgery, Medical SchoolUniversity of CreteHeraklionGreece
  3. 3.Centre for Medical Image ComputingUniversity College LondonLondonUK

Personalised recommendations