Advertisement

Medical & Biological Engineering & Computing

, Volume 53, Issue 1, pp 37–44 | Cite as

Thalamic reticular cells firing modes and its dependency on the frequency and amplitude ranges of the current stimulus

  • Oscar HernandezEmail author
  • Lilibeth Hernandez
  • David Vera
  • Alcides Santander
  • Eduardo Zurek
Original Article

Abstract

The neurons of the Thalamic Reticular Nucleus (TRNn) respond to inputs in two activity modes called burst and tonic firing and both can be observed in different physiological states. The functional states of the thalamus depend in part on the properties of synaptic transmission between the TRNn and the thalamocortical and corticothalamic neurons. A dendrite can receive inhibitory and excitatory postsynaptic potentials. The novelties presented in this paper can be summarized as follows: First, it shows, through a computational simulation, that the burst and tonic firings observed in the TRNn soma could be explained as a product of random synaptic inputs on the distal dendrites, the tonic firings are generated by random excitatory stimuli, and the burst firings are generated by two different types of stimuli: inhibitory random stimuli, and a combination of inhibitory (from TRNn) and excitatory (from corticothalamic and thalamocortical neurons) random stimuli; second, according to in vivo recordings, we have found that the burst observed in the TRNn soma has graduate properties that are proportional to the stimuli frequency; and third, a novel method for showing in a quantitative manner the accelerando-decelerando pattern is proposed.

Keywords

Neuron Simulation Frequency Stimulus current Tonic firing Burst firing 

References

  1. 1.
    Contreras D, Curro D, Steriade M (1993) Electrophysiological properties of cat reticular thalamic neurones in vivo. J Phys 470:273–294Google Scholar
  2. 2.
    Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–4590Google Scholar
  3. 3.
    Destexhe A, Contreras D, Steriade M, Sejnowski T, Huguenard J (1996) In viva, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16(1):169–185PubMedGoogle Scholar
  4. 4.
    Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurons. J Physiol 379:402–405CrossRefGoogle Scholar
  5. 5.
    Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744Google Scholar
  6. 6.
    Hernández O, Jabba D, Muñoz F (2013) Data exporter: a complementary tool to export data simulation from neuron. 29(2):288–297Google Scholar
  7. 7.
    Hines M, Carnevale N (2002) The NEURON simulation environment. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Johnston D, Wu M (1994) Foundations of Cellular Neurophysiology. The MIT Press, CambridgeGoogle Scholar
  9. 9.
    Kim U, McCormick D (1998) The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 18(22):9500–9516PubMedGoogle Scholar
  10. 10.
    Liao YF, Tsai ML, Chen CC, Yen CT (1998) Involvement of the cav3.2 t-type calcium channel in thalamic neuron discharge patterns. Mol Pain 7(43):1–10Google Scholar
  11. 11.
    McCormick D, Prince D (1986) Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nat Neurosci 319:402–405Google Scholar
  12. 12.
    ModelDB (2012): Modeldb. http://senselab.med.yale.edu/modeldb/showmodel.asp?model=17663. Accessed Sept 13
  13. 13.
    Mukhametov L, Rizzolatti G, Tradardi V (1970) Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats. J Physiol 210:651–667PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Muñoz F, Fuentealba P (2012) Dynamics of action potential initiation in the gabaergic thalamic reticular nucleus in vivo. Plos One 7(1):1–13CrossRefGoogle Scholar
  15. 15.
    Nicolelis M, Fanselow E (2002) Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523PubMedCrossRefGoogle Scholar
  16. 16.
    Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res 46:1–13CrossRefGoogle Scholar
  17. 17.
    Pinault D, Deschenes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469PubMedCrossRefGoogle Scholar
  18. 18.
    QtiPlot (2012): Qtiplot. http://soft.proindependent.com/qtiplot.html. Accessed Sept 13
  19. 19.
    Rhodes P, Gray C (1994) Simulations of intrinsically bursting neocortical pyramidal neurons. Neural Comput 6:1086–1110CrossRefGoogle Scholar
  20. 20.
    Scheibel ME, Scheibel AB (1966) Terminal axonal patterns in cat spinal cord I. The lateral corticospinal tract. Brain Res 2(4):333–350PubMedCrossRefGoogle Scholar
  21. 21.
    Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Dynamics of action potential initiation in the gabaergic thalamic reticular nucleus in vivo. J Neurosci 27:629–638CrossRefGoogle Scholar
  22. 22.
    Traub R (1979) Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior. Brain Res 173:243–257PubMedCrossRefGoogle Scholar
  23. 23.
    Traub R, Wong R, Miles R, Michelson H (1991) A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650PubMedGoogle Scholar
  24. 24.
    Long Xu N, Quan Ye C, Ming Poo M, Hui Zhang X (2006) Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction. J Neurosci 26(11):3002–3009CrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Oscar Hernandez
    • 1
    Email author
  • Lilibeth Hernandez
    • 2
  • David Vera
    • 2
  • Alcides Santander
    • 4
  • Eduardo Zurek
    • 3
  1. 1.Departamento de Qumica y BiologaUniversidad del NorteBarranquillaColombia
  2. 2.Universidad del NorteBarranquillaColombia
  3. 3.Departamento de Ingenieria de SistemasUniversidad del NorteBarranquillaColombia
  4. 4.Departamento de Ingenieria IndustrialUniversidad del NorteBarranquillaColombia

Personalised recommendations