Advertisement

Medical & Biological Engineering & Computing

, Volume 52, Issue 12, pp 1031–1040 | Cite as

Continuous flow left ventricular pump support and its effect on regional left ventricular wall stress: finite element analysis study

  • Choon-Sik Jhun
  • Kay Sun
  • Joshua P. Cysyk
Original Article

Abstract

Left ventricular assist device (LVAD) support unloads left ventricular (LV) pressure and volume and decreases wall stress. This study investigated the effect of systematic LVAD unloading on the 3-dimensional myocardial wall stress by employing finite element models containing layered fiber structure, active contractility, and passive stiffness. The HeartMate II® (Thoratec, Inc., Pleasanton, CA) was used for LV unloading. The model geometries and hemodynamic conditions for baseline (BL) and LVAD support (LVsupport) were acquired from the Penn State mock circulatory cardiac simulator. Myocardial wall stress of BL was compared with that of LVsupport at 8,000, 9,000, 10,000 RPM, providing mean pump flow (Q mean) of 2.6, 3.2, and 3.7 l/min, respectively. LVAD support was more effective at unloading during diastole as compared to systole. Approximately 40, 50, and 60 % of end-diastolic wall stress reduction were achieved at Q mean of 2.6, 3.2, and 3.7 l/min, respectively, as compared to only a 10 % reduction of end-systolic wall stress at Q mean of 3.7 l/min. In addition, there was a stress concentration during systole at the apex due to the cannulation and reduced boundary motion. This modeling study can be used to further understand optimal unloading, pump control, patient management, and cannula design.

Keywords

Heart failure Ventricular assist device Mock circulatory system Finite element method Wall stress 

References

  1. 1.
    Ambardekar AV, Buttrick PM (2011) Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects. Circ Heart Fail 4(2):224–233PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, Schmid C, Deng MC (2000) Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant 19(7):668–674PubMedCrossRefGoogle Scholar
  3. 3.
    Barbone A, Oz MC, Burkhoff D, Holmes JW (2001) Normalized diastolic properties after left ventricular assist result from reverse remodeling of chamber geometry. Circulation 104(12 Suppl 1):I229–I232PubMedGoogle Scholar
  4. 4.
    Bruggink AH, de Jonge N, van Oosterhout MF, Van Wichen DF, de Koning E, Lahpor JR, Kemperman H, Gmelig-Meyling FH, de Weger RA (2006) Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant 25(2):174–180PubMedCrossRefGoogle Scholar
  5. 5.
    Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, Cleutjens JP, Gmelig-Meyling FH, de Weger RA (2006) Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transplant 25(9):1091–1098PubMedCrossRefGoogle Scholar
  6. 6.
    Carabello BA (1995) The relationship of left ventricular geometry and hypertrophy to left ventricular function in valvular heart disease. J Heart Valve Dis 4(Suppl 2):S132–S138 (discussion S138–S139)Google Scholar
  7. 7.
    Chaudhary KW, Rossman EI, Piacentino V 3rd, Kenessey A, Weber C, Gaughan JP, Ojamaa K, Klein I, Bers DM, Houser SR, Margulies KB (2004) Altered myocardial Ca2 + cycling after left ventricular assist device support in the failing human heart. J Am Coll Cardiol 44(4):837–845PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Y, Park S, Li Y, Missov E, Hou M, Han X, Hall JL, Miller LW, Bache RJ (2003) Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics 14(3):251–260PubMedGoogle Scholar
  9. 9.
    Devereux RB, Roman MJ, Palmieri V, Okin PM, Boman K, Gerdts E, Nieminen MS, Papademetriou V, Wachtell K, Dahlof B (2000) Left ventricular wall stresses and wall stress-mass-heart rate products in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. Losartan Intervention For Endpoint reduction in hypertension. J Hypertens 18(8):1129–1138PubMedCrossRefGoogle Scholar
  10. 10.
    Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, Stehlik J (2011) Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol 26(3):245–255PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gere JM, Goodno BJ (2009) Mechanics of materials. Cengage Learning, MasonGoogle Scholar
  12. 12.
    Grossman W (1980) Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 69(4):576–584PubMedCrossRefGoogle Scholar
  13. 13.
    Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig 56(1):56–64PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Guccione JM, Moonly SM, Wallace AW, Ratcliffe MB (2001) Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study. J Thorac Cardiovasc Surg 122(3):592–599PubMedCrossRefGoogle Scholar
  15. 15.
    Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719PubMedCrossRefGoogle Scholar
  16. 16.
    Jan KM (1985) Distribution of myocardial stress and its influence on coronary blood flow. J Biomech 18(11):815–820PubMedCrossRefGoogle Scholar
  17. 17.
    Jeevanandam V (2012) Are we ready to implant left ventricular assist devices in “less sick” patients? Semin Thorac Cardiovasc Surg 24(1):8–10PubMedCrossRefGoogle Scholar
  18. 18.
    Jhun CS, Wenk JF, Zhang Z, Wall ST, Sun K, Sabbah HN, Ratcliffe MB, Guccione JM (2010) Effect of adjustable passive constraint on the failing left ventricle: a finite-element model study. Ann Thorac Surg 89(1):132–137PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jhun C-S, Reibson JD, Cysyk JP (2011) Effective ventricular unloading by left ventricular assist device varies with stage of heart failure: cardiac simulator study. ASAIO J 57(5):407–413PubMedCrossRefGoogle Scholar
  20. 20.
    Klodell CT Jr, Aranda JM Jr, McGiffin DC, Rayburn BK, Sun B, Abraham WT, Pae WE Jr, Boehmer JP, Klein H, Huth C (2008) Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J Thorac Cardiovasc Surg 135(1):188–195PubMedCrossRefGoogle Scholar
  21. 21.
    La Gerche A, Heidbuchel H, Burns AT, Mooney DJ, Taylor AJ, Pfluger HB, Inder WJ, Macisaac AI, Prior DL (2011) Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc 43(6):974–981PubMedCrossRefGoogle Scholar
  22. 22.
    Mann DL, Kubo SH, Sabbah HN, Starling RC, Jessup M, Oh JK, Acker MA (2011) Beneficial effects of the CorCap cardiac support device: Five-year results from the Acorn Trial. J Thorac Cardiovasc Surg 143(5):1036–1042Google Scholar
  23. 23.
    Martina JR, Schipper ME, de Jonge N, Ramjankhan F, de Weger RA, Lahpor JR, Vink A (2013) Analysis of aortic valve commissural fusion after support with continuous-flow left ventricular assist device. Interact CardioVasc Thorac Surg 17(4):616–624PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Morgan JA, Brewer RJ, Nemeh HW, Henry SE, Neha N, Williams CT, Lanfear DE, Tita C, Paone G (2012) Management of aortic valve insufficiency in patients supported by long-term continuous flow left ventricular assist devices. Ann Thorac Surg 94(5):1710–1712PubMedCrossRefGoogle Scholar
  25. 25.
    Mueller XM, Tevaearai HT, Tucker O, Boone Y, von Segesser LK (2001) Reshaping the remodelled left ventricle: a new concept. Eur J Cardiothorac Surg 20(4):786–791PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller XM, Tevaearai H, Boone Y, Augstburger M, von Segesser LK (2002) An alternative to left ventricular volume reduction. J Heart Lung Transplant 21(7):791–796PubMedCrossRefGoogle Scholar
  27. 27.
    Remmelink M, Sjauw KD, Henriques JP, de Winter RJ, Vis MM, Koch KT, Paulus WJ, de Mol BA, Tijssen JG, Piek JJ, Baan J Jr (2010) Effects of mechanical left ventricular unloading by Impella on left ventricular dynamics in high-risk and primary percutaneous coronary intervention patients. Catheter Cardiovasc Interv 75(2):187–194PubMedCrossRefGoogle Scholar
  28. 28.
    Saraf H, Ramesh KT, Lennon AM, Merkle AC, Roberts JC (2007) Mechanical properties of soft human tissues under dynamic loading. J Biomech 40(9):1960–1967PubMedCrossRefGoogle Scholar
  29. 29.
    Sheikh FH, Russell SD (2011) HeartMate(R) II continuous-flow left ventricular assist system. Expert Rev Med Devices 8(1):11–21PubMedCrossRefGoogle Scholar
  30. 30.
    Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, Starling RC, Chen L, Boyle AJ, Chillcott S, Adamson RM, Blood MS, Camacho MT, Idrissi KA, Petty M, Sobieski M, Wright S, Myers TJ, Farrar DJ (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29(4 Suppl):S1–S39PubMedCrossRefGoogle Scholar
  31. 31.
    Smalling RW, Cassidy DB, Barrett R, Lachterman B, Felli P, Amirian J (1992) Improved regional myocardial blood flow, left ventricular unloading, and infarct salvage using an axial-flow, transvalvular left ventricular assist device. A comparison with intra-aortic balloon counterpulsation and reperfusion alone in a canine infarction model. Circulation 85(3):1152–1159PubMedCrossRefGoogle Scholar
  32. 32.
    Streeter DD Jr, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ Res 33(6):639–655PubMedCrossRefGoogle Scholar
  33. 33.
    Streeter DD Jr, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33(6):656–664PubMedCrossRefGoogle Scholar
  34. 34.
    Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY, Saeed M, Wallace AW, Tseng EE, Baker AJ, Saloner D, Einstein DR, Ratcliffe MB, Guccione JM (2009) A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 131(11):111001PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Veress AI, Segars WP, Tsui BM, Gullberg GT (2011) Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom. IEEE Trans Med Imaging 30(4):915–927PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Walsh RG (2005) Design and features of the acorn corcap cardiac support device: the concept of passive mechanical diastolic support. Heart Fail Rev 10(2):101–107PubMedCrossRefGoogle Scholar
  37. 37.
    Wohlschlaeger J, Schmitz KJ, Schmid C, Schmid KW, Keul P, Takeda A, Weis S, Levkau B, Baba HA (2005) Reverse remodeling following insertion of left ventricular assist devices (LVAD): a review of the morphological and molecular changes. Cardiovasc Res 68(3):376–386PubMedCrossRefGoogle Scholar
  38. 38.
    Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB (1998) Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98(7):656–662PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang J, Narula J (2004) Molecular biology of myocardial recovery. Surg Clin North Am 84(1):223–242PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Z, Tendulkar A, Sun K, Saloner DA, Wallace AW, Ge L, Guccione JM, Ratcliffe MB (2011) Comparison of the young-Laplace law and finite element based calculation of ventricular wall stress: implications for post infarct and surgical ventricular remodeling. Ann Thorac Surg 91(1):150–156PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  1. 1.Division of Artificial Organs, Department of Surgery, College of MedicineThe Pennsylvania State UniversityHersheyUSA
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations