Medical & Biological Engineering & Computing

, Volume 52, Issue 10, pp 885–894 | Cite as

Using a low-amplitude RF pulse at echo time (LARFET) for device localization in MRI

  • Murat Tümer
  • Baykal Sarioglu
  • Senol Mutlu
  • Yekta Ulgen
  • Arda Yalcinkaya
  • Cengizhan Ozturk
Original Article


We describe a new method for frequency down-conversion of MR signals acquired with the radio-frequency projections method for device localization. A low-amplitude, off-center RF pulse applied simultaneously with the echo signal is utilized as the reference for frequency down-conversion. Because of the low-amplitude and large offset from the Larmor frequency, the RF pulse minimally interfered with magnetic resonance of protons. We conducted an experiment with the coil placed at different positions to verify this concept. The down-converted signal was transformed into optical signal and transmitted via fiber-optic cable to a receiver unit placed outside the scanner room. The position of the coil could then be determined by the frequency analysis of this down-converted signal and superimposed on previously acquired MR images for comparison. Because of minimal positional errors (≤0.8 mm), this new device localization method may be adequate for most interventional MRI applications.


Interventional MRI Device localization Catheter tracking Frequency down-conversion Self-mixing 



The authors thank Umut Cindemir and Berk Camli for their efforts during experiments, Mr. Francis Payne and Dr. Can Akgün for their valuable editorial support. The experiments were conducted at National Magnetic Resonance Research Center (UMRAM) at Bilkent University, Ankara and Acıbadem Kozyatağı Hospital, Istanbul. This study was supported by The Scientific and Technological Research Council Of Turkey (TUBITAK, Project 111E197) and Boğaziçi University LifeSci Center (Ministry of Development, 2009K1200520), and EU Marie Curie Actions IRSES Project 269300 (TAHITI, Improving Therapy and Intervention through Imaging).


  1. 1.
    Anders J, Sangiorgio P, Deligianni X, Santini F, Scheer K, Boero G (2012) Integrated active tracking detector for MRI-guided interventions. Magn Reson Med 67(1):290PubMedCrossRefGoogle Scholar
  2. 2.
    Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP (1996) Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med 36(6):816Google Scholar
  3. 3.
    Bakker CJ, Smits HF, Bos C, van der Weide R, Zuiderveld KJ, van Vaals JJ, Hurtak WF, Viergever MA, Mali WP (1998) MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for guiding, monitoring, and evaluating endovascular interventions. J Magn Reson Imaging 8(1):245Google Scholar
  4. 4.
    Bloch F, Siegert A (1940) Magnetic resonance for nonrotating fields. Phys Rev 57:522CrossRefGoogle Scholar
  5. 5.
    Bock M, Volz S, Zuehlsdorff S, Umathum R, Fink C, Hallscheidt P, Semmler W (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19(5):580PubMedCrossRefGoogle Scholar
  6. 6.
    Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV (2010) Designing passive MRI-safe implantable conducting leads with electrodes. Med Phys 37(7):3828PubMedCrossRefGoogle Scholar
  7. 7.
    Burl M, Coutts GA, Young IR (2005) Tuned fiducial markers to identify body locations with minimal perturbation of tissue magnetization. Magn Reson Med 36(3):491CrossRefGoogle Scholar
  8. 8.
    Busse H, Thormer G, Garnov N, Haase J, Kahn T, Moche M (2010) Technique for wireless position tracking of intravascular catheters: Performance evaluation in a vessel phantom. Proc Intl Soc Mag Reson Med 18:4163Google Scholar
  9. 9.
    Chung YC, Merkle EM, Lewin JS, Shonk JR, Duerk JL (1999) Fast T(2)-weighted imaging by PSIF at 0.2 T for interventional MRI. Magn Reson Med 42(2):335PubMedCrossRefGoogle Scholar
  10. 10.
    Duerk JL, Wong EY, Lewin JS (2002) A brief review of hardware for catheter tracking in magnetic resonance imaging. MAGMA 13(3):199PubMedCrossRefGoogle Scholar
  11. 11.
    Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29(3):411PubMedCrossRefGoogle Scholar
  12. 12.
    Erhart P, Ladd ME, Steiner P, Heske N, Dumoulin CL, Debatin JF (1998) Tissue-independent MR tracking of invasive devices with an internal signal source. Magn Reson Med 39(2):279PubMedCrossRefGoogle Scholar
  13. 13.
    Fandrey S, Weiss S, Müller J (2012) A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner. Magn Reson Med 67(1):148PubMedCrossRefGoogle Scholar
  14. 14.
    Fandrey S, Weiss S, Muller J (2008) Development of an active intravascular MR device with an optical transmission system. IEEE Trans Med Imaging 27(12):1723PubMedCrossRefGoogle Scholar
  15. 15.
    Fritz J, U-Thainual P, Ungi T, Flammang AJ, Cho NB, Fichtinger G, Iordachita II, Carrino JA (2012) Augmented reality visualization with image overlay for MRI-guided intervention: accuracy for lumbar spinal procedures with a 1.5-T MRI system. Am J Roentgenol 198(3):W266CrossRefGoogle Scholar
  16. 16.
    Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, Karmarkar P, Lederman RJ, McVeigh ER (2007) Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging 26(6):1429PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, Duerk JL (2004) Active device tracking and high-resolution intravascular MRI using a novel catheterbased, opposed-solenoid phased array coil. Magn Reson Med 51(4):668PubMedCrossRefGoogle Scholar
  18. 18.
    Hurst GC, Hua J, Duerk JL, Cohen AM (1992) Intravascular (catheter) NMR receiver probe: Preliminary design analysis and application to canine iliofemoral imaging. Magn Reson Med 24(2):343PubMedCrossRefGoogle Scholar
  19. 19.
    Kocaturk O, Saikus CE, Guttman MA, Faranesh AZ, Ratnayaka K, Ozturk C, McVeigh ER, Lederman RJ (2009) Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes. J Cardiovasc Magn Reson 11:29Google Scholar
  20. 20.
    Kuehne T, Fahrig R, Butts K (2003) Pair of resonant fiducial markers for localization of endovascular catheters at all catheter orientations. J Magn Reson Imaging 17(5):620PubMedCrossRefGoogle Scholar
  21. 21.
    Ladd ME, Zimmermann GG, McKinnon GC, von Schulthess GK, Dumoulin CL, Darrow RD, Hofmann E, Debatin JF (1998) Visualization of vascular guidewires using MR tracking. J Magn Reson Imaging 8(1):251PubMedCrossRefGoogle Scholar
  22. 22.
    Lardo aC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, Halperin HR (2000) Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102(6):698PubMedCrossRefGoogle Scholar
  23. 23.
    Linte CA, Lang P, Rettmann ME, Cho DS, Holmes DR, Robb RA, Peters TM (2012) Accuracy considerations in image-guided cardiac interventions: experience and lessons learned. Int J Comput Assist Radiol Surg 7(1):13PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13(1):105PubMedCrossRefGoogle Scholar
  25. 25.
    Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM, Grist TM (2000) Real-Time MR Imaging-guided Passive Catheter Tracking with Use of Gadolinium- filled Catheters. J Vasc Interv Radiol 11(8):1079PubMedCrossRefGoogle Scholar
  26. 26.
    Ozturk C, Guttman M, McVeigh E, Lederman RJ (2005) Magnetic resonance imaging guided vascular interventions. Top Magn Reson Imaging 16(5):369PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pitsaer C, Umathum R, Homagk AK, Ozturk C, Bock M (2010) Three concepts for tuning and matching intravascular catheter coils. Proc Intl Soc Mag Reson Med 8:1852Google Scholar
  28. 28.
    Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME (2002) Inductively coupled stent antennas in MRI. Magn Reson Med 48(5):781PubMedCrossRefGoogle Scholar
  29. 29.
    Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Massing S, Bosk S, Ladd ME (2005) Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med 53(2):446PubMedCrossRefGoogle Scholar
  30. 30.
    Ramsey N (1955) Resonance transitions induced by perturbations at two or more different frequencies. Phys Rev 100(4):1191CrossRefGoogle Scholar
  31. 31.
    Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ (2008) Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 10:62Google Scholar
  32. 32.
    Razavi R, Hill DLG, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, Baker E (2003) Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 362(9399):1877PubMedCrossRefGoogle Scholar
  33. 33.
    Sarioglu B, Aktan O, Oncu A, Mutlu S, Dundar G, Yalcinkaya AD (2012) An optically powered CMOS receiver system for intravascular magnetic resonance applications. IEEE J Emerg Sel Topics Power Electron 2(4):683Google Scholar
  34. 34.
    Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, Ozturk C, Lederman RJ, Kocaturk O (2012) MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson 14:38PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sun N, Liu Y, Lee H, Weissleder R, Ham D (2009) CMOS RF Biosensor Utilizing Nuclear Magnetic Resonance. IEEE J Solid-State Circ 44(5):1629Google Scholar
  36. 36.
    Unal O, Li J, Cheng W, Yu H, Strother CM (2006) MR-visible coatings for endovascular device visualization. J Magn Reson Imaging 23(5):763PubMedCrossRefGoogle Scholar
  37. 37.
    Vernickel P, Schulz V, Weiss S, Gleich B (2005) A safe transmission line for MRI. IEEE Trans Biomed Eng 52(6):1094PubMedCrossRefGoogle Scholar
  38. 38.
    Wacker FK, Elgort D, Hillenbrand CM, Duerk JL, Lewin JS (2004) The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI. Am J Roentgenol 183(2):391CrossRefGoogle Scholar
  39. 39.
    Weiss S, Schaeffter T, Luedeke K, Leussler C, Holz D, Nehrke K, Rasche V, Sinkus R (1999) Catheter localization using a resonant fiducial marker during interactive MR fluoroscopy. Proc Intl Soc Mag Reson Med 12:1954Google Scholar
  40. 40.
    Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B (2005) Transmission line for improved RF safety of interventional devices. Magn Reson Med 54(1):182PubMedCrossRefGoogle Scholar
  41. 41.
    Yeung CJ, Atalar E (2001) A Green's function approach to local RF heating in interventional MRI. Med Phys 28(5):826PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Murat Tümer
    • 1
  • Baykal Sarioglu
    • 2
  • Senol Mutlu
    • 3
  • Yekta Ulgen
    • 1
  • Arda Yalcinkaya
    • 3
  • Cengizhan Ozturk
    • 1
  1. 1.Institute of Biomedical EngineeringBoğaziçi UniversityIstanbulTurkey
  2. 2.Department of Electrical and Electronic EngineeringBilgi UniversityIstanbulTurkey
  3. 3.Department of Electrical and Electronic EngineeringBoğaziçi UniversityIstanbulTurkey

Personalised recommendations