Advertisement

Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo

  • Mansik Jeon
  • Jeesu Kim
  • Chulhong Kim
Special Issue – Original Article

Abstract

We have successfully developed a multiscale acoustic-resolution photoacoustic tomography system in a single imaging platform. By switching between ultrasound transducers (center frequencies 5 and 40 MHz) and optical condensers, we have photoacoustically imaged microvasculatures of small animals in vivo at different scales. Further, we have extended the field of view of our imaging system to entire bodies of small animals. At different imaging planes, we have noninvasively imaged the major blood vessels (e.g., descending aorta, intercostal vessels, cephalic vessels, brachial vessels, femoral vessels, popliteal vessels, lateral marginal vessels, cranial mesenteric vessels, mammalian vessels, carotid artery, jugular vein, subclavian vessels, iliac vessels, and caudal vessels) as well as intact internal organs (e.g., spleen, liver, kidney, intestine, cecum, and spinal cord) of the animals in vivo. The spectroscopic whole-body photoacoustic imaging clearly reveals the spectral responses of the internal structures. Similar to other existing preclinical whole-body imaging systems, this whole-body photoacoustic tomography can be a useful tool for small-animal research.

Keywords

Photoacoustic imaging Multiscale imaging Whole-body imaging Small-animal imaging 

Notes

Acknowledgments

This work was supported by the research funds from an NRF-2013K1A3A1A20046921 (China-ROK Joint Research Project), an NRF-2011-0030075 (Engineering Research Center), and a NIPA-2013-H0203-13-1001 (IT Consilience Creative Program) of the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11517_2014_1182_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1311 kb)
11517_2014_1182_MOESM2_ESM.mpg (1.3 mb)
Supplementary material 2 (MPG 1376 kb)
11517_2014_1182_MOESM3_ESM.mpg (1 mb)
Supplementary material 3 (MPG 1032 kb)
11517_2014_1182_MOESM4_ESM.mpg (922 kb)
Supplementary material 4 (MPG 922 kb)
11517_2014_1182_MOESM5_ESM.mpg (1.3 mb)
Supplementary material 5 (MPG 1292 kb)
11517_2014_1182_MOESM6_ESM.mpg (1.4 mb)
Supplementary material 6 (MPG 1408 kb)
11517_2014_1182_MOESM7_ESM.mpg (896 kb)
Supplementary material 7 (MPG 896 kb)
11517_2014_1182_MOESM8_ESM.mpg (844 kb)
Supplementary material 8 (MPG 844 kb)
11517_2014_1182_MOESM9_ESM.mpg (1.2 mb)
Supplementary material 9 (MPG 1254 kb)
11517_2014_1182_MOESM10_ESM.mpg (1004 kb)
Supplementary material 10 (MPG 1004 kb)
11517_2014_1182_MOESM11_ESM.mpg (1 mb)
Supplementary material 11 (MPG 1040 kb)
11517_2014_1182_MOESM12_ESM.mpg (1.4 mb)
Supplementary material 12 (MPG 1422 kb)
11517_2014_1182_MOESM13_ESM.mpg (1.3 mb)
Supplementary material 13 (MPG 1332 kb)
11517_2014_1182_MOESM14_ESM.mpg (1012 kb)
Supplementary material 14 (MPG 1012 kb)
11517_2014_1182_MOESM15_ESM.mpg (952 kb)
Supplementary material 15 (MPG 952 kb)
11517_2014_1182_MOESM16_ESM.mpg (1.3 mb)
Supplementary material 16 (MPG 1292 kb)
11517_2014_1182_MOESM17_ESM.mpg (1.2 mb)
Supplementary material 17 (MPG 1248 kb)

References

  1. 1.
    Akers WJ, Edwards WB, Kim C, Xu BG, Erpelding TN, Wang LHV, Achilefu S (2012) Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography. Transl Res 159(3):175–181. doi: 10.1016/j.trsl.2011.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akers WJ, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza GM, Fischer GM, Daltrozzo E, Zumbusch A, Cai X, Wang LV, Achilefu S (2011) Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5(1):173–182. doi: 10.1021/Nn102274q CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1(4):602–631. doi: 10.1098/rsfs.2011.0028 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1(4):576–601. doi: 10.1098/rsfs.2011.0037 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4). doi: 10.1117/1.3194136
  8. 8.
    ItheraMedical. Available via http://www.ithera-medical.com
  9. 9.
    Jeon M, Oh J, Kim J, Peterson T, Chen J, Kim C (2013) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine. doi: 10.2217/nnm.13.103 PubMedCentralGoogle Scholar
  10. 10.
    Jeon M, Kim C (2013) Multimodal Photoacoustic Tomography. IEEE Trans Multimed 15(5):975–982. doi: 10.1109/Tmm.2013.2244203 CrossRefGoogle Scholar
  11. 11.
    Judenhofer MS, Cherry SR (2013) Applications for preclinical PET/MRI. Semin Nucl Med 43(1):19–29. doi: 10.1053/j.semnuclmed.2012.08.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC (2010) In vivo small animal imaging: current status and future prospects. Med Phys 37(12):6421–6442. doi: 10.1118/1.3515456 CrossRefPubMedGoogle Scholar
  13. 13.
    Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, Muschel RJ, Hill MA, Smart SC (2011) Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med 52(11):1827–1833. doi: 10.2967/jnumed.111.089151 CrossRefPubMedGoogle Scholar
  14. 14.
    Kim C, Cho EC, Chen JY, Song KH, Au L, Favazza C, Zhang QA, Cobley CM, Gao F, Xia YN, Wang LHV (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564. doi: 10.1021/Nn100736c CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim C, Favazza C, Wang LHV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782. doi: 10.1021/Cr900266s CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim C, Jeon M, Wang LV (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599–3601. doi: 10.1364/OL.36.003599 CrossRefPubMedGoogle Scholar
  17. 17.
    Liao LD, Lin CT, Shih YYI, Duong TQ, Lai HY, Wang PH, Wu R, Tsang S, Chang JY, Li ML, Chen YY (2012) Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. J Cerebr Blood Flow Metab 32(6):938–951. doi: 10.1038/jcbfm.2012.42 CrossRefGoogle Scholar
  18. 18.
    Liao LD, Tsytsarev V, Delgado-Martinez I, Li ML, Erzurumlu R, Vipin A, Orellana J, Lin YR, Lai HY, Chen YY, Thakor NV (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12. doi: 10.1186/1475-925x-12-38
  19. 19.
    Mallidi S, Luke GP, Emelianov S (2011) Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol 29(5):213–221. doi: 10.1016/j.tibtech.2011.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maslov K, Stoica G, Wang LHV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627. doi: 10.1364/Ol.30.000625 CrossRefPubMedGoogle Scholar
  21. 21.
    Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614. doi: 10.1038/Nmeth.1483 CrossRefPubMedGoogle Scholar
  22. 22.
  23. 23.
    Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5). doi: 10.1117/1.3247155
  24. 24.
    Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129. doi: 10.1038/nprot.2011.351 CrossRefPubMedGoogle Scholar
  25. 25.
    Ritman EL (2011) Current status of developments and applications of micro-CT. Annu Rev Biomed Eng 13:531–552. doi: 10.1146/annurev-bioeng-071910-124717 CrossRefPubMedGoogle Scholar
  26. 26.
    Song KH, Wang LV (2007) Deep reflection-mode photoacoustic imaging of biological tissue. J Biomed Opt 12(6). doi: 10.1117/1.2818045
  27. 27.
    Song L, Kim C, Maslov K, Shung KK, Wang LHV (2009) High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys 36(8):3724–3729. doi: 10.1118/1.3168598 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Su R, Ermilov SA, Liopo AV, Oraevsky AA (2012) Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models. J Biomed Opt 17(10). doi: 10.1117/1.Jbo.17.10.101506
  29. 29.
    Tsytsarev V, Bernardelli C, Maslov K (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroeng 1(2):180–192CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Wang LHV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. doi: 10.1126/science.1216210 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Xia J, Wang LHV (2014) Small-animal whole-body photoacoustic tomography: a review. IEEE Trans Bio Med Eng 61(5):1380–1389CrossRefGoogle Scholar
  33. 33.
    Yao JJ, Maslov KI, Shi YF, Taber LA, Wang LHV (2010) In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421. doi: 10.1364/Ol.35.001419 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9:631–638CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  1. 1.Departments of Creative IT Engineering and Electrical Engineering, Future IT Innovation LaboratoryPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations