Medical & Biological Engineering & Computing

, Volume 52, Issue 8, pp 695–706 | Cite as

Sound transmission in the chest under surface excitation: an experimental and computational study with diagnostic applications

  • Ying Peng
  • Zoujun Dai
  • Hansen A. Mansy
  • Richard H. Sandler
  • Robert A. Balk
  • Thomas J. Royston
Original Article


Chest physical examination often includes performing chest percussion, which involves introducing sound stimulus to the chest wall and detecting an audible change. This approach relies on observations that underlying acoustic transmission, coupling, and resonance patterns can be altered by chest structure changes due to pathologies. More accurate detection and quantification of these acoustic alterations may provide further useful diagnostic information. To elucidate the physical processes involved, a realistic computer model of sound transmission in the chest is helpful. In the present study, a computational model was developed and validated by comparing its predictions with results from animal and human experiments which involved applying acoustic excitation to the anterior chest, while detecting skin vibrations at the posterior chest. To investigate the effect of pathology on sound transmission, the computational model was used to simulate the effects of pneumothorax on sounds introduced at the anterior chest and detected at the posterior. Model predictions and experimental results showed similar trends. The model also predicted wave patterns inside the chest, which may be used to assess results of elastography measurements. Future animal and human tests may expand the predictive power of the model to include acoustic behavior for a wider range of pulmonary conditions.


Computational modeling Lung acoustics Pneumothorax Percussion Human studies 



Financial support of the National Institutes of Health (Grant No. EB012142) is acknowledged. The assistance of Mr. Brian Henry in the experiment is appreciated.


  1. 1.
    Acikgoz S, Ozer MB, Royston TJ, Mansy HA, Sandler RH (2008) Experimental and computational models for simulating sound propagation within the lungs. ASME J Vib Acoust 130(2):021010CrossRefGoogle Scholar
  2. 2.
    Athanassiadi K, Kalavrouziotis G, Loutsidis A, Hatzimichalis A, Bellenis I, Exarchos N (1998) Surgical treatment of spontaneous pneumothorax: ten-year experience. World J Surg 22(8):803–806PubMedCrossRefGoogle Scholar
  3. 3.
    Bohadana AB, Kraman S (1989) Transmission of sound generated by sternal percussion. J Appl Physiol 66(1):273–277PubMedCrossRefGoogle Scholar
  4. 4.
    Bohadana AB, Patel R, Kraman SS (1989) Contour maps of auscultatory percussion in healthy subjects and patients with large intrapulmonary lesions. Lung 167(1):359–372PubMedCrossRefGoogle Scholar
  5. 5.
    Bourbie T, Coussy O, Zinszner B (1987) Acoustics of porous media. Gulf Publishing Company, Huston, pp 86–87Google Scholar
  6. 6.
    Bourke S, Nunes D, Stafford F, Turkey G, Graham I (1989) Percussion of the chest re-visited: a comparison of the diagnostic value of auscultatory and conventional chest percussion. Iran J Med Sci 158(4):82–84CrossRefGoogle Scholar
  7. 7.
    Dai Z, Peng Y, Royston TJ, Mansy HA (2013) Experimental comparison of poroviscoelastic models for sound and vibration in the lungs. ASME J Vib Acoust. doi: 10.1115/1.4026436
  8. 8.
    Goll JH (1979) The design of broad-band fluid-loaded ultrasonic transducers. Son Ultrason IEEE Trans 26(6):385–393CrossRefGoogle Scholar
  9. 9.
    Goss BC, McGee KP, Ehman EC, Manduca A, Ehman RL (2006) Magnetic resonance elastography of the lung: technical feasibility. Magn Reson Med 56(5):1060–1066PubMedCrossRefGoogle Scholar
  10. 10.
    Guarino J (1974) Auscultation percussion: a new aid in the examination of the chest. J Kans Med Soc 75(6):193–194PubMedGoogle Scholar
  11. 11.
    Guarino J (1980) Auscultatory percussion of the chest. Lancet 315(8182):1332–1334CrossRefGoogle Scholar
  12. 12.
    Hansen LB, Brons M, Nielsen NT (1986) Auscultatory percussion of the lung: prospective comparison of two methods of clinical examination of the lungs. Ugeskr Laeg 148(6):323–325PubMedGoogle Scholar
  13. 13.
    Kemper J, Sinkus R, Lorenzen J, Nolte-Ernsting C, Stork A, Adam G (2004) MR elastography of the prostate: initial in vivo application. In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 176(8):1094–1099. © Georg Thieme Verlag KG Stuttgart, New YorkGoogle Scholar
  14. 14.
    Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL (2008) Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E et al (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5(4):237–254PubMedCrossRefGoogle Scholar
  16. 16.
    Mansy HA, Balk R, Royston TJ, Sandler RH (2002) Pneumothorax detection using computerized analysis of breath sounds. Med Biol Eng Comput 40(5):526–532PubMedCrossRefGoogle Scholar
  17. 17.
    Mansy HA, Royston TJ, Balk RA, Sandler RH (2002) Pneumothorax detection using pulmonary acoustic transmission measurements. Med Biol Eng Comput 40(5):520–525PubMedCrossRefGoogle Scholar
  18. 18.
    Mariappan YK, Glaser KJ, Hubmayr RD, Manduca A, Ehman RL, McGee KP (2011) MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging 33(6):1351–1361PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Murray A, Neilson JMM (1975) Diagnostic percussion sounds: 1. a qualitative analysis. Med Biol Eng Comput 13(1):19–28CrossRefGoogle Scholar
  20. 20.
    Napadow VJ, Mai V, Bankier A, Gilbert RJ, Edelman R, Chen Q (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13(3):467–474PubMedCrossRefGoogle Scholar
  21. 21.
    Ogata K (2004) System dynamics, vol 4, 4th edn. Pearson/Prentice Hall, New Jersey, p 107Google Scholar
  22. 22.
    Ozer MB, Acikgoz S, Royston TJ, Mansy HA, Sandler RH (2007) Boundary element model for simulating sound propagation and source localization within the lungs. J Acoust Soc Am 122(1):657–671PubMedCrossRefGoogle Scholar
  23. 23.
    Plewes DB, Bishop J, Samani A, Sciarretta J (2000) Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 45(6):1591PubMedCrossRefGoogle Scholar
  24. 24.
    Rice DA (1983) Sound speed in pulmonary parenchyma. J Appl Physiol 54:1304–1308Google Scholar
  25. 25.
    Royston TJ, Dai Z, Chaunsali R, Liu Y, Peng Y, Magin RL (2011) Estimating material viscoelastic properties based on surface wave measurements: a comparison of techniques and modeling assumptions. J Acoust Soc Am 130(6):4126–4138PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Royston TJ, Ozer MB, Acikgoz S, Mansy HA, Sandler RH (2008) Advances in computational modeling of sound propagation in the lungs and torso with diagnostic applications. In: Biomedical applications of vibration and acoustics in imaging and characterizations, chap 9. ASME Press, pp 217–248Google Scholar
  27. 27.
    Royston TJ, Zhang X, Mansy HA, Sandler RH (2002) Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung. J Acous Soc Am 111:1931–1946CrossRefGoogle Scholar
  28. 28.
    Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Von Gierke HE, Oestreicher HL, Franke EK, Parrack HO, von Wittern WW (1952) Physics of vibrations in living tissues. J Appl Physiol 4(12):886–900PubMedGoogle Scholar
  31. 31.
    Walker HK, Hall WD Hurst JW (1990) The funduscopic examination-clinical methods: the history, physical, and laboratory examinations, 3rd edn, Chaper 46, ButterworthsGoogle Scholar
  32. 32.
    Warner L, Yin M, Ehman RL, Lerman LO (2009) Kidney stiffness measured in an animal model of unilateral renal arterial stenosis using 2-D MR elastography. in: Proceedings of the international society for magnetic resonance in medicine, p 407Google Scholar
  33. 33.
    Wodicka GR, Stevens KN, Golub HL, Cravalho EG, Shannon DC (1989) A model of acoustic transmission in the respiratory system. IEEE Trans Biomed Eng 36(9):925–934PubMedCrossRefGoogle Scholar
  34. 34.
    Wodicka GR, Aguirre A, DeFrain PD, Shannon DC (1992) Phase delay of pulmonary acoustic transmission from trachea to chest wall. Biomed Eng IEEE Trans 39(10):1053–1059CrossRefGoogle Scholar
  35. 35.
    Yasar TK, Royston TJ, Magin RL (2012) Wideband MR elastography for viscoelasticity model identification. Magn Reson Med 70(2):479–489PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Ying Peng
    • 1
  • Zoujun Dai
    • 1
  • Hansen A. Mansy
    • 2
    • 4
  • Richard H. Sandler
    • 2
    • 3
  • Robert A. Balk
    • 4
  • Thomas J. Royston
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.University of Central FloridaOrlandoUSA
  3. 3.Nemours Children’s HospitalOrlandoUSA
  4. 4.Rush University Medical CenterChicagoUSA

Personalised recommendations