Advertisement

Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation

  • M. A. Elattar
  • E. M. Wiegerinck
  • R. N. Planken
  • E. vanbavel
  • H. C. van Assen
  • J. BaanJr.
  • H. A. Marquering
Original Article

Abstract

Transcatheter aortic valve implantation is a minimal-invasive intervention for implanting prosthetic valves in patients with aortic stenosis. Accurate automated sizing for planning and patient selection is expected to reduce adverse effects such as paravalvular leakage and stroke. Segmentation of the aortic root in CTA is pivotal to enable automated sizing and planning. We present a fully automated segmentation algorithm to extract the aortic root from CTA volumes consisting of a number of steps: first, the volume of interest is automatically detected, and the centerline through the ascending aorta and aortic root centerline are determined. Subsequently, high intensities due to calcifications are masked. Next, the aortic root is represented in cylindrical coordinates. Finally, the aortic root is segmented using 3D normalized cuts. The method was validated against manual delineations by calculating Dice coefficients and average distance error in 20 patients. The method successfully segmented the aortic root in all 20 cases. The mean Dice coefficient was 0.95 ± 0.03, and the mean radial absolute error was 0.74 ± 0.39 mm, where the interobserver Dice coefficient was 0.95 ± 0.03 and the mean error was 0.68 ± 0.34 mm. The proposed algorithm showed accurate results compared to manual segmentations.

Keywords

Aortic root Medical image segmentation Normalized cut TAVI CTA 

Notes

Acknowledgments

The authors wish to thank for the support from the Technology Foundation STW, The Netherlands, under Grant 11630.

References

  1. 1.
    Antiga L, Piccinelli M, Botti L et al (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112. doi: 10.1007/s11517-008-0420-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Baan J, Yong ZY, Koch KT et al (2010) Factors associated with cardiac conduction disorders and permanent pacemaker implantation after percutaneous aortic valve implantation with the corevalve prosthesis. Am Heart J 159:497–503. doi: 10.1016/j.ahj.2009.12.009 PubMedCrossRefGoogle Scholar
  3. 3.
    Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the ninth IEEE international conference on Computer Vision, vol 2. IEEE Computer Society, Washington, pp 26–33Google Scholar
  4. 4.
    Capelli C, Bosi GM, Cerri E et al (2012) Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput 50:183–192. doi: 10.1007/s11517-012-0864-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Delgado V, Ng ACT, Schuijf JD et al (2011) Automated assessment of the aortic root dimensions with multidetector row computed tomography. Ann Thorac Surg 91:716–723. doi: 10.1016/j.athoracsur.2010.09.060 PubMedCrossRefGoogle Scholar
  6. 6.
    Duquette AA, Jodoin P-M, Bouchot O, Lalande A (2012) 3D segmentation of abdominal aorta from CT-scan and MR images. Comput Med Imaging Graph 36:294–303. doi: 10.1016/j.compmedimag.2011.12.001 PubMedCrossRefGoogle Scholar
  7. 7.
    Erbel R, Eggebrecht H (2006) Aortic dimensions and the risk of dissection. Heart 92:137–142. doi: 10.1136/hrt.2004.055111 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Grbic S, Ionasec R, Vitanovski D et al (2012) Complete valvular heart apparatus model from 4D cardiac CT. Med Image Anal 16:1003–1014. doi: 10.1016/j.media.2012.02.003 PubMedCrossRefGoogle Scholar
  9. 9.
    Grube E, Laborde JC, Gerckens U et al (2006) Percutaneous implantation of the corevalve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation 114:1616–1624. doi: 10.1161/CIRCULATIONAHA.106.639450 PubMedCrossRefGoogle Scholar
  10. 10.
    Isgum I, Staring M, Rutten A et al (2009) Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28:1000–1010. doi: 10.1109/TMI.2008.2011480 PubMedCrossRefGoogle Scholar
  11. 11.
    Iung B (2003) A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease. Eur Heart J 24:1231–1243. doi: 10.1016/S0195-668X(03)00201-X PubMedCrossRefGoogle Scholar
  12. 12.
    Kurkure U, Avila-Montes OC, Kakadiaris IA (2008) Automated segmentation of thoracic aorta in non-contrast CT images. 2008 5th IEEE Int Symp Biomed Imaging From Nano to Macro. doi:  10.1109/ISBI.2008.4540924
  13. 13.
    Lavi G, Lessick J, Johnson PC, Khullar D (2004) Single-seeded coronary artery tracking in CT angiography. Nucl Sci Symp Conf Rec 5:3308–3311Google Scholar
  14. 14.
    Leon M, Smith C, Mack M (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607PubMedCrossRefGoogle Scholar
  15. 15.
    Padala M, Sarin EL, Willis P et al (2010) An engineering review of transcatheter aortic valve technologies. Cardiovasc Eng Technol 1:77–87. doi: 10.1007/s13239-010-0008-4 CrossRefGoogle Scholar
  16. 16.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905. doi: 10.1109/34.868688 CrossRefGoogle Scholar
  17. 17.
    Vahanian A, Alfieri O, Al-Attar N et al (2008) Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percu. Eur Heart J 29:1463–1470. doi: 10.1093/eurheartj/ehn183 PubMedCrossRefGoogle Scholar
  18. 18.
    Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors. IEEE Conf Comput Vis Pattern Recognit 1:1–8. doi: 10.1109/CVPR.2008.4587440 Google Scholar
  19. 19.
    Waechter I, Kneser R, Korosoglou G et al (2010) Patient specific models for planning and guidance of minimally invasive aortic valve implantation. Med Image Comput Comput Assist Interv 13:526–533PubMedGoogle Scholar
  20. 20.
    Ye J, Cheung A, Lichtenstein SV et al. (2010) Transapical transcatheter aortic valve implantation: follow-up to 3 years. J Thorac Cardiovasc Surg 139:1107–13, 1113.e1. doi  10.1016/j.jtcvs.2009.10.056
  21. 21.
    Zheng Y, John M, Liao R et al (2012) Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation. IEEE Trans Med Imaging 31:2307–2321. doi: 10.1109/TMI.2012.2216541 PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • M. A. Elattar
    • 1
  • E. M. Wiegerinck
    • 2
  • R. N. Planken
    • 3
  • E. vanbavel
    • 1
  • H. C. van Assen
    • 4
  • J. BaanJr.
    • 2
  • H. A. Marquering
    • 1
    • 3
  1. 1.Department of Biomedical Engineering and Physics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Cardiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Radiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations