Medical & Biological Engineering & Computing

, Volume 52, Issue 4, pp 405–414

Change of mechanical vertebrae properties due to progressive osteoporosis: combined biomechanical and finite-element analysis within a rat model

  • Robert Müller
  • Marian Kampschulte
  • Thaqif El Khassawna
  • Gudrun Schlewitz
  • Britta Hürter
  • Wolfgang Böcker
  • Manfred Bobeth
  • Alexander C. Langheinrich
  • Christian Heiss
  • Andreas Deutsch
  • Gianaurelio Cuniberti
Original Article

Abstract

For assessing mechanical properties of osteoporotic bone, biomechanical testing combined with in silico modeling plays a key role. The present study focuses on microscopic mechanical bone properties in a rat model of postmenopausal osteoporosis. Female Sprague–Dawley rats were (1) euthanized without prior interventions, (2) sham-operated, and (3) subjected to ovariectomy combined with a multi-deficiencies diet. Rat vertebrae (corpora vertebrae) were imaged by micro-CT, their stiffness was determined by compression tests, and load-induced stress states as well as property changes due to the treatment were analyzed by finite-element modeling. By comparing vertebra stiffness measurements with finite-element calculations of stiffness, an overall microscopic Young’s modulus of the bone was determined. Macroscopic vertebra stiffness as well as the microscopic modulus diminish with progression of osteoporosis by about 70 %. After strong initial changes of bone morphology, further decrease in macroscopic stiffness is largely due to decreasing microscopic Young’s modulus. The micromechanical stress calculations reveal particularly loaded vertebra regions prone to failure. Osteoporosis-induced changes of the microscopic Young’s modulus alter the fracture behavior of bone, may influence bone remodeling, and should be considered in the design of implant materials.

Keywords

Osteoporosis Biomechanics Young’s modulus Bone histology Rat model 

References

  1. 1.
    Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2012) PETSc. http://www.mcs.anl.gov/petsc
  2. 2.
    Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM (2006) Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6):1218–1225CrossRefPubMedGoogle Scholar
  3. 3.
    Broulik PD, Vondrova J, Ruzicka P, Sedlacek R, Zima T (2010) The effect of chronic alcohol administration on bone mineral content and bone strength in male rats. Physiol Res 59(4):599–604PubMedGoogle Scholar
  4. 4.
    Busse B, Hahn M, Soltau M, Zustin J, Püschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45(6):1034–1043CrossRefPubMedGoogle Scholar
  5. 5.
    Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184CrossRefPubMedGoogle Scholar
  6. 6.
    Christensen RM (1991) Mechanics of composite materials. Krieger Publishing, Malabar, FLGoogle Scholar
  7. 7.
    El Khassawna T, Böcker W, Govindarajan P, Schliefke N, Hürter B, Kampschulte M, Schlewitz G, Alt V, Lips KS, Faulenbach M, Möllmann H, Zahner D, Dürselen L, Ignatius A, Bauer N, Wenisch S, Langheinrich AC, Schnettler R, Heiss C (2013) Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat. PLoS ONE 8:e71665CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Frost HM (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188PubMedGoogle Scholar
  9. 9.
    Govindarajan P, Schlewitz G, Schliefke N, Weisweiler D, Alt V, Thormann U, Lips KS, Wenisch S, Langheinrich AC, Zahner D, Hemdan NY, Böcker W, Schnettler R, Heiss C (2013) Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in done parameters and bone loss at multiple skeletal sites by DEXA. Med Sci Monit Basic Res 19:76–86CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Guo XE, Goldstein SA (2000) Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18(2):333–336CrossRefPubMedGoogle Scholar
  11. 11.
    Heiss C, Govindarajan P, Schlewitz G, Hemdan NY, Schliefke N, Alt V, Thormann U, Lips KS, Wenisch S, Langheinrich AC, Zahner D, Schnettler R (2012) Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA. Med Sci Monit 18:199–207CrossRefGoogle Scholar
  12. 12.
    Henss A, Rohnke M, El Khassawna T, Govindarajan P, Schlewitz G, Heiss C, Janek J (2013) Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J R Soc Interface 6:1742–5662Google Scholar
  13. 13.
    Kinney JH, Haupt DL, Balooch M, Ladd AJC, Ryaby JT, Lane NE (2000) Three-dimensional morphometry of the L6 vertebra in the ovariectomized rat model of osteoporosis: biomechanical implications. J Bone Miner Res 15(10):1981–1991CrossRefPubMedGoogle Scholar
  14. 14.
    Ladd AJC, Kinney JH (1998) Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech 31(10):941–945CrossRefPubMedGoogle Scholar
  15. 15.
    Ladd AJC, Kinney JH, Haupt DL, Goldstein SA (1998) Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res 16(5):622–628CrossRefPubMedGoogle Scholar
  16. 16.
    Lewis G, Nyman JS (2008) The use of nanoindentation for characterizing the properties of mineralized hard tissues: State-of-the art review. J Biomed Mater Res Appl Biomater 87B(1):286–301CrossRefGoogle Scholar
  17. 17.
    Madi K, Aufort G, Gasser A, Forest S (2010) Prediction of the elastic modulus of the trabecular bone based on X-ray computed tomography. In: Lim CT, Goh JCH (eds) WCB 2010, IFMBE proceedings 31. Springer, Berlin, pp 800–803Google Scholar
  18. 18.
    Mueller TL, Stauber M, Kohler T, Eckstein F, Müller R, van Lenthe GH (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44(2):364–371CrossRefPubMedGoogle Scholar
  19. 19.
    Mueller TL, Christen D, Sandercott S, Boyd SK, van Rietbergen B, Eckstein F, Lochmüller EM, Müller R, van Lenthe GH (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238CrossRefPubMedGoogle Scholar
  20. 20.
    Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12):1575–1583CrossRefPubMedGoogle Scholar
  21. 21.
    Novitskaya E, Chen PY, Hamed E, Li J, Lubarda VA, Jasiuk I, McKittrick J (2011) Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review. Theor Appl Mech 38(3):209–297CrossRefGoogle Scholar
  22. 22.
    Pistoia W, van Rietbergen B, Lochmüller EM, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848CrossRefPubMedGoogle Scholar
  23. 23.
    Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119CrossRefPubMedGoogle Scholar
  24. 24.
    Stemper BD, Board D, Yoganandan N, Wolfla CE (2010) Biomechanical properties of human thoracic spine disc segments. J Craniovertebr Junction Spine 1(1):18–22CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Tsafnat N, Wroe S (2011) An experimentally validated micromechanical model of a rat vertebra under compressive loading. J Anat 218(1):40–46CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Uhthof HK, Finneagan M (1983) The effects of metal plates on post-traumatic remodelling and bone mass. J Bone Joint Surg Br 65B:66–71Google Scholar
  27. 27.
    van Lenthe GH, Stauber M, Müller R (2006) Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39(6):1182–1189CrossRefPubMedGoogle Scholar
  28. 28.
    Vondrova J, Lukes J, Sedlacek R, Suchy T, Ruzicka P (2009) Comparative study of macro vs. micro test of osteoporotic rat bones. Bull Appl Mech 5(20):93–95Google Scholar
  29. 29.
    Wachtel EF, Keaveny TM (1997) Dependence of trabecular damage on mechanical strain. J Orthop Res 15(5):781–787CrossRefPubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2014

Authors and Affiliations

  • Robert Müller
    • 1
  • Marian Kampschulte
    • 2
  • Thaqif El Khassawna
    • 3
  • Gudrun Schlewitz
    • 4
  • Britta Hürter
    • 3
  • Wolfgang Böcker
    • 3
    • 4
  • Manfred Bobeth
    • 1
  • Alexander C. Langheinrich
    • 5
  • Christian Heiss
    • 3
    • 4
  • Andreas Deutsch
    • 6
  • Gianaurelio Cuniberti
    • 1
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  2. 2.Department of RadiologyUniversity Hospital of Giessen-MarburgGiessenGermany
  3. 3.Laboratory of Experimental Trauma SurgeryJustus-Liebig UniversityGiessenGermany
  4. 4.Department of Trauma SurgeryUniversity Hospital of Giessen-MarburgGiessenGermany
  5. 5.Department of Diagnostic and Interventional RadiologyBG Trauma HospitalFrankfurt/MainGermany
  6. 6.Center for Information Services and High Performance ComputingDresden University of TechnologyDresdenGermany

Personalised recommendations