Medical & Biological Engineering & Computing

, Volume 52, Issue 2, pp 159–168 | Cite as

High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi

  • J. Tarjuelo-Gutierrez
  • B. Rodriguez-Vila
  • D. M. Pierce
  • T. E. Fastl
  • P. Verbrugghe
  • I. Fourneau
  • G. Maleux
  • P. Herijgers
  • G. A. Holzapfel
  • E. J. Gomez
Original Article


In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.


Magnetic resonance imaging Abdominal aortic aneurysm Intraluminal thrombus Conforming hexahedral meshes Finite element analysis 



The authors gratefully acknowledge the financial support of the European Commission under the 7th Framework Program, Grant Agreement Number 248782.


  1. 1.
    Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A (2002) Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Comput Med Imaging Graph 26(4):227–235PubMedCrossRefGoogle Scholar
  2. 2.
    Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6):704–713PubMedCrossRefGoogle Scholar
  3. 3.
    Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B (2011) Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 33(3):281–289PubMedCrossRefGoogle Scholar
  4. 4.
    De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput 48(4):371–380PubMedCrossRefGoogle Scholar
  5. 5.
    De Santis G, De Beule M, Segers P, Verdonck P, Verhegghe B (2011) Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations. Comput Methods Biomech Biomed Eng 14(9):797–802CrossRefGoogle Scholar
  6. 6.
    De Santis G, De Beule M, Van Canneyt K, Segers P, Verdonck P, Verhegghe B (2011) Full-hexahedral structured meshing for image-based computational vascular modeling. Med Eng Phys 33(10):1318–1325PubMedCrossRefGoogle Scholar
  7. 7.
    Baker TJ (1987) Three dimensional mesh generation by triangulation of arbitrary point sets. In: Proceedings of the 8th AIAA Computational fluid dynamics conference, Honolulu, HI, Paper 87-1124Google Scholar
  8. 8.
    Gloviczki P, Ricotta JJWII (2007) Aneurysmal vascular disease. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KL (eds) Sabiston textbook of surgery. Saunders Elsevier, PhiladelphiaGoogle Scholar
  9. 9.
    Henderson A (2007) The ParaView guide: a parallel visualization application. Kitware Inc., Clifton ParkGoogle Scholar
  10. 10.
    Ho-Le K (1988) Finite element mesh generation methods: a review and classification. Comput Aided Des 20(1):27–38CrossRefGoogle Scholar
  11. 11.
    Ito Y, Shih AM, Soni BK (2009) Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int J Numer Methods Eng 77(13):1809–1833CrossRefGoogle Scholar
  12. 12.
    Knupp PM (2007) Remarks on mesh quality. In: Proceedings of the 45th AIAA aerospace sciences meeting and exhibit, Reno, NVGoogle Scholar
  13. 13.
    Lee S, Piersol N, Loth F, Fischer P, Leaf G, Smith B, Yedevalli R, Yardimci A, Alperin N, Schwartz L (2000) Automated mesh generation of an arterial bifurcation based upon in vivo MR images. In: Engineering in Medicine and Biology Society. Proceedings of the 22nd annual EMBS international conference, Chicago, IL, pp 719–722Google Scholar
  14. 14.
    Löhner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8(10):1135–1149CrossRefGoogle Scholar
  15. 15.
    Longest PW, Vinchurkar S (2007) Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med Eng Phys 29(3):350–366PubMedCrossRefGoogle Scholar
  16. 16.
    Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J (2012) Harrison’s manual of medicine. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Lu JH-C, Song I, Quadros WR, Shimada K (2010) Pen-based user interface for geometric decomposition for hexahedral mesh generation. In: Proceedings of the 19th international meshing roundtable, Chattanooga, TN, pp 263–278Google Scholar
  18. 18.
    Mac Donald BJ (2007) Practical stress analysis with finite elements. Glasnevin Publishing, DublinGoogle Scholar
  19. 19.
    Nichols M, Townsend N, Luengo-Fernandez R, Leal J, Gray A, Scarborough P, Rayner M (2012) European cardiovascular disease statistics 2012. European Heart Network, European Society of Cardiology, BrusselsGoogle Scholar
  20. 20.
    Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. Int J Numer Methods Eng 67(6):841–867CrossRefGoogle Scholar
  21. 21.
    Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modeling of the proximal femur. Med Eng Phys 28(9):916–924PubMedCrossRefGoogle Scholar
  22. 22.
    Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA (2012) Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 9(71):1275–1286PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shepherd JF, Johnson CR (2008) Hexahedral mesh generation constraints. Eng Comput 24(3):195–213CrossRefGoogle Scholar
  24. 24.
    Stimpson CJ, Ernst CD, Knupp P, Pébay PP, Thompson D (2007) The Verdict geometric quality library. Sandia National Laboratories, SAND2007-1751Google Scholar
  25. 25.
    Tong J, Cohnert T, Regitnig P, Holzapfel GA (2011) Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur J Vasc Endovasc Surg 42(2):207–219PubMedCrossRefGoogle Scholar
  26. 26.
    Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, Chetter IC, McCollum PT (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 28(2):168–176PubMedGoogle Scholar
  27. 27.
    Verma CS, Fischer PF, Lee SE, Loth F (2005) An all-hex meshing strategy for bifurcation geometries in vascular flow simulation. In: Proceedings of 14th international meshing roundtable, San Diego, CA, pp 363–375Google Scholar
  28. 28.
    Wassef M, Baxter BT, Chisholm RL, Dalman RL, Fillinger MF, Heinecke J, Humphrey JD, Kuivaniemi H, Parks WC, Pearce WH, Platsoucas CD, Sukhova GK, Thompson RW, Tilson MD, Zarins CK (2001) Pathogenesis of abdominal aortic aneurysms: a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vasc Surg 34(4):730–738PubMedCrossRefGoogle Scholar
  29. 29.
    Yerry MA, Shephard MS (1984) Automatic three-dimensional mesh generation by the modified-octree technique. Int J Numer Methods Eng 20(11):1965–1990CrossRefGoogle Scholar
  30. 30.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2013

Authors and Affiliations

  • J. Tarjuelo-Gutierrez
    • 1
    • 2
  • B. Rodriguez-Vila
    • 1
    • 2
  • D. M. Pierce
    • 3
  • T. E. Fastl
    • 3
  • P. Verbrugghe
    • 4
  • I. Fourneau
    • 4
  • G. Maleux
    • 4
  • P. Herijgers
    • 4
  • G. A. Holzapfel
    • 3
    • 5
  • E. J. Gomez
    • 1
    • 2
  1. 1.Bioengineering and Telemedicine Centre, ETSI de TelecomunicaciónUniversidad Politécnica de MadridMadridSpain
  2. 2.Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)SaragossaSpain
  3. 3.Institute of Biomechanics, Center of Biomedical EngineeringGraz University of TechnologyGrazAustria
  4. 4.Laboratory of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, Gasthuisberg University HospitalUniversity of LeuvenLouvainBelgium
  5. 5.Department of Solid Mechanics, School of Engineering SciencesRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations