Medical & Biological Engineering & Computing

, Volume 52, Issue 3, pp 271–282 | Cite as

Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination

  • I. Parel
  • A. G. Cutti
  • A. Kraszewski
  • G. Verni
  • H. Hillstrom
  • A. Kontaxis
Special Issue - Original Article


Multi-center clinical trials incorporating shoulder kinematics are currently uncommon. The absence of repeatability and limits of agreement (LoA) studies between different centers employing different motion analysis protocols has led to a lack dataset compatibility. Therefore, the aim of this work was to determine the repeatability and LoA between two shoulder kinematic protocols. The first one uses a scapula tracker (ST), the International Society of Biomechanics anatomical frames and an optoelectronic measurement system, and the second uses a spine tracker, the INAIL Shoulder and Elbow Outpatient protocol (ISEO) and an inertial and magnetic measurement system. First within-protocol repeatability for each approach was assessed on a group of 23 healthy subjects and compared with the literature. Then, the between-protocol agreement was evaluated. The within-protocol repeatability was similar for the ST (\(\overline{\text{RMSE}}\) = 2.35°, \(\sigma_{\text{RMSE}}\) = 0.97°, SEM = 2.5°) and ISEO (\(\overline{\text{RMSE}}\) = 2.24°, \(\sigma_{\text{RMSE}}\) = 0.97°, SEM = 2.3°) protocols and comparable with data from published literature. The between-protocol agreement analysis showed comparable scapula medio-lateral rotation measurements for up to 120° of flexion-extension and up to 100° of scapula plane ab-adduction. Scapula protraction–retraction measurements were in agreement for a smaller range of humeral elevation. The results of this study suggest comparable repeatability for the ST and ISEO protocols and between-protocol agreement for two scapula rotations. Different thresholds for repeatability and LoA may be adapted to suit different clinical hypotheses.


Shoulder Biomechanics Repeatability Agreement Motion analysis protocol 


General terms


Inertial and magnetic measurement system


Spine tracker


Scapula tracker



Ab-adduction of the humerus in the scapular plane


Flexion–extension of the humerus in the sagittal plane


Medio-lateral rotation of the scapula


Posterior–anterior tilt of the scapula


Pro-retraction of the scapula


Humeral elevation angle

Statistic parameters


Between protocols, i.e., between ST and ISEO


Within each protocol, i.e., within ST or within ISEO


Coefficient of repeatability


Limits of agreement


Root mean square error




Standard deviation of RMSE


Standard error of measurement


Standard deviation

Supplementary material

11517_2013_1121_MOESM1_ESM.doc (93 kb)
Supplementary material 1 (DOC 93 kb)


  1. 1.
    Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475PubMedCrossRefGoogle Scholar
  2. 2.
    Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22:85–93PubMedCrossRefGoogle Scholar
  3. 3.
    Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Bio Eng Comput 46(2):169–178CrossRefGoogle Scholar
  4. 4.
    De Baets L, Jaspers E, Desloovere K, Van Deun S (2012) A systematic review of 3D scapular kinematics and muscle activity during elevation in stroke subjects and controls. J Electromyogr Kinesiol. doi: 10.1016/j.jelekin.2012.06.007
  5. 5.
    de Vries WH, Veeger HE, Cutti AG, Baten C, van der Helm FC (2010) Functionally interpretable local coordinate systems for the upper extremity using inertial and magnetic measurement systems. J Biomech 43(10):1983–1988PubMedCrossRefGoogle Scholar
  6. 6.
    Ebaugh DD, McClure PW, Karduna AR (2005) Three-dimensional scapulothoracic motion during active and passive arm elevation. Clin Biomech 20(7):700–709CrossRefGoogle Scholar
  7. 7.
    Fayad F, Roby-Brami A, Yazbeck C, Hanneton S, Lefevre-Colau MM, Gautheron V, Poiraudeau S, Revel M (2008) Three-dimensional scapular kinematics and scapulohumeral rhythm in patients with glenohumeral osteoarthritis or frozen shoulder. J Biomech 41(2):326–332PubMedCrossRefGoogle Scholar
  8. 8.
    Karduna AR, McClure PW, Michener LA, Sennett B (2001) Dynamic measurement of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123(2):184–190PubMedCrossRefGoogle Scholar
  9. 9.
    Kontaxis A, Johnson GR (2008) Adaptation of scapula lateral rotation after reverse anatomy shoulder replacement. Comput Methods Biomech Biomed Engin 11(1):73–80PubMedCrossRefGoogle Scholar
  10. 10.
    Kontaxis A, Cutti AG, Johnson GR, Veeger HE (2009) A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin Biomech (Bristol, Avon) 24(3):246–253CrossRefGoogle Scholar
  11. 11.
    Lovern B, Stroud LA, Evans RO et al (2009) Dynamic tracking of the scapula using skin-mounted markers. Proc Inst Mech Eng H 223(7):823–831PubMedCrossRefGoogle Scholar
  12. 12.
    Ludewig PM, Cook TM (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80(3):276–291PubMedGoogle Scholar
  13. 13.
    Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF (2009) Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am 91(2):378–389PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    McClure PW, Michener LA, Sennett BJ, Karduna AR (2001) Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 10(3):269–277PubMedCrossRefGoogle Scholar
  15. 15.
    Mell AG, LaScalza S, Guffey P, Ray J, Maciejewski M, Carpenter JE, Hughes RE (2005) Effect of rotator cuff pathology on shoulder rhythm. J Shoulder Elbow Surg 14(1 Suppl S):58S–64SPubMedCrossRefGoogle Scholar
  16. 16.
    Meskers CG, van de Sande MA, de Groot JH (2007) Comparison between tripod and skin-fixed recording of scapular motion. J Biomech 40(4):941–946PubMedCrossRefGoogle Scholar
  17. 17.
    Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP (2012) Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture 35(4):636–640PubMedCrossRefGoogle Scholar
  18. 18.
    Prinold JAI, Shaheen AF, Bull AMJ (2011) Skin-fixed scapula trackers: a comparison of two dynamic methods across a range of calibration positions. J Biomech 44(10):2004–2007PubMedCrossRefGoogle Scholar
  19. 19.
    Schwartz MH, Rozulmalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116PubMedCrossRefGoogle Scholar
  20. 20.
    Shaheen AF, Alexander CM, Bull AMJ (2011) Effects of attachment position and shoulder orientation during calibration on the accuracy of the acromial tracker. J Biomech 44:1410–1413PubMedCrossRefGoogle Scholar
  21. 21.
    Thigpen CA, Gross MT, Karas SG (2005) The repeatability of scapular rotations across three planes of humeral elevation. Res Sports Med 13(3):181–198PubMedCrossRefGoogle Scholar
  22. 22.
    van Andel C, van Hutten K, Eversdijk M, Veeger D, Harlaar J (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29(1):123–128PubMedCrossRefGoogle Scholar
  23. 23.
    van del Helm FC (1997) A standardized protocol for motion recordings of the shoulder. In: Proceedings of the First Conference of the ISG, ISBN90-423-0008-6 by Shaker Publishing B.V., pp 7–12Google Scholar
  24. 24.
    Veeger HE (2000) The position of the rotation center of the glenohumeral joint. J Biomech 33(12):1711–1715PubMedCrossRefGoogle Scholar
  25. 25.
    Vermeulen HM, Stokdijk M, Eilers PH, Meskers CG, Rozing PM, Vliet Vlieland TP (2002) Measurement of three dimensional shoulder movement patterns with an electromagnetic tracking device in patients with a frozen shoulder. Ann Rheum Dis 61(2):115–120PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240PubMedGoogle Scholar
  27. 27.
    Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992PubMedCrossRefGoogle Scholar
  28. 28.
    Bland M (2000) An introduction to medical statistics, 3rd Ed, Oxford University Press, New York, p 273Google Scholar
  29. 29.
    Yano Y, Hamada J, Tamai K, Yoshizaki K, Sahara R, Fujiwara T, Nohara Y (2010) Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. J Shoulder Elbow Surg 19(2):209–215PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2013

Authors and Affiliations

  • I. Parel
    • 1
    • 2
  • A. G. Cutti
    • 1
    • 4
  • A. Kraszewski
    • 3
  • G. Verni
    • 1
  • H. Hillstrom
    • 3
  • A. Kontaxis
    • 3
  1. 1.I.N.A.I.L. Centro ProtesiVigorso di BudrioItaly
  2. 2.DIAUniversity of TriesteTriesteItaly
  3. 3.The Hospital for Special SurgeryNew YorkUSA
  4. 4.Motion Analysis LaboratoryC/O Centro Protesi INAILVigorso di BudrioItaly

Personalised recommendations