Medical & Biological Engineering & Computing

, Volume 52, Issue 1, pp 53–64 | Cite as

Cardiovascular control and stabilization via inclination and mobilization during bed rest

  • Martin Wieser
  • Stefan Gisler
  • Amirehsan Sarabadani
  • Rafael M. Ruest
  • Lilith Buetler
  • Heike Vallery
  • Verena Klamroth-Marganska
  • Margret Hund-Georgiadis
  • Morena Felder
  • Josef L. Schoenberger
  • Clemens Gutknecht
  • Robert Riener
Original Article

Abstract

Cardiovascular deconditioning has long been recognized as a characteristic of the physiological adaptation to long-term bed rest in patients. The process is thought to contribute to orthostatic intolerance and enhance secondary complications in a significant way. Mobilization is a cost-effective and simple method to maintain the cardiovascular parameters (i.e., blood pressure, heart rate) stable, counter orthostatic intolerance and reduce the risk of secondary problems in patients during long-term immobilization. The aim of this project is to control the cardiovascular parameters such as heart rate and blood pressure of bed rest patients via automated leg mobilization and body tilting. In a first step, a nonlinear model predictive control strategy was designed and evaluated on five healthy subjects and 11 bed rest patients. In a next step, a clinically feasible study was conducted on two patients. The mean values differed on average less than 1 bpm from the predetermined heart rate and less than 2.5 mmHg from the desired blood pressure values. These results of the feasibility study are promising, although heterogeneous disease etiologies and individual medication strongly influence the mechanically induced reactions. The long-term goal is an automation of the control of physiological signals and the mobilization of bed rest patients in an early phase of the rehabilitation process. Therefore, this new approach could help to strengthen the cardiovascular system and prevent secondary health problems arising from long-term bed rest.

Keywords

Bed rest Stabilization Cardiovascular system Actuated tilt table Model predictive control 

References

  1. 1.
    Akkerman E (1991) Dynamics of blood pressure regulation under influence of gravity: a mathematical model, a fast tilt table, and experiments. Academisch Boeken CentrumGoogle Scholar
  2. 2.
    Camacho EF, Bordons C (eds) (1999) Model predictive control. Springer, LondonGoogle Scholar
  3. 3.
    Camm AJ et al (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065CrossRefGoogle Scholar
  4. 4.
    Chi L et al (2008) Cardiovascular response to functional electrical stimulation and dynamic tilt table therapy to improve orthostatic tolerance. J Electromyogr Kinesiol 18(6):900–907PubMedCrossRefGoogle Scholar
  5. 5.
    Christov II (2004) Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed Eng Online 3(1):28PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cooke WH et al (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol 517(2):617–628PubMedCrossRefGoogle Scholar
  7. 7.
    Corbett J, Frankel H, Harris P (1971) Cardiovascular responses to tilting in tetraplegic man. J Physiol 215(2):411–431PubMedGoogle Scholar
  8. 8.
    Cumming TB et al (2011) Very early mobilization after stroke fast-tracks return to walking. Stroke 42(1):153–158PubMedCrossRefGoogle Scholar
  9. 9.
    Czell D et al (2004) Influence of passive leg movements on blood circulation on the tilt table in healthy adults. J NeuroEng Rehab 1:4CrossRefGoogle Scholar
  10. 10.
    Denq JC et al (1997) Efficacy of compression of different capacitance beds in the amelioration of orthostatic hypotension. Clin Auton Res 7(6):321–326PubMedCrossRefGoogle Scholar
  11. 11.
    Dittmer D, Teasell R (1993) Complications of immobilization and bed rest. Part 1: musculoskeletal and cardiovascular complications. Can Fam Phys 39:1428Google Scholar
  12. 12.
    Engelke KA et al (1996) Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity. Am J Physiol-Regul Integr Comp Physiol 271(4):R837–R847Google Scholar
  13. 13.
    Feldstein C, Weder AB (2012) Orthostatic hypotension: a common, serious and underrecognized problem in hospitalized patients. J Am Soc Hypertens 6(1):27–39PubMedCrossRefGoogle Scholar
  14. 14.
    Hainsworth R, Al-Shamma Y et al (1988) Cardiovascular responses to upright tilting in healthy subjects. Clin Sci (London, England: 1979) 74(1):17Google Scholar
  15. 15.
    Harper C, Lyles Y et al (1988) Physiology and complications of bed rest. J Am Geriatr Soc 36(11):1047PubMedGoogle Scholar
  16. 16.
    Heldt T et al (2003) Circulatory response to passive and active changes in posture. In: Computers in cardiology, IEEE, 2003Google Scholar
  17. 17.
    Houtman S et al (2000) Sympathetic nervous system activity and cardiovascular homeostasis during head-up tilt in patients with spinal cord injuries. Clin Auton Res 10(4):207–212PubMedCrossRefGoogle Scholar
  18. 18.
    Katona PG, Barnett GO, Jackson WD (1967) Computer simulation of the blood pressure control of the heart period. Baroreceptors Hypertens 191–199Google Scholar
  19. 19.
    Kwok T, Liddle J, Hastie IR (1995) Postural hypotension and falls. Postgrad Med J 71(835):278–280PubMedCrossRefGoogle Scholar
  20. 20.
    Legramante J et al (2001) Positive and negative feedback mechanisms in the neural regulation of cardiovascular function in healthy and spinal cord–injured humans. Circulation 103(9):1250–1255PubMedCrossRefGoogle Scholar
  21. 21.
    Luther MS et al (2008) Comparison of orthostatic reactions of patients still unconscious within the first three months of brain injury on a tilt table with and without integrated stepping. A prospective, randomized crossover pilot trial. Clin Rehab 22(12):1034–1041CrossRefGoogle Scholar
  22. 22.
    Masuki S et al (2007) Arterial baroreflex control of heart rate during exercise in postural tachycardia syndrome. J Appl Physiol 103(4):1136–1142PubMedCrossRefGoogle Scholar
  23. 23.
    Morris PE et al (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure*. Crit Care Med 36(8):2238PubMedCrossRefGoogle Scholar
  24. 24.
    Parati G et al (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation a critical appraisal. Hypertension 25(6):1276–1286PubMedCrossRefGoogle Scholar
  25. 25.
    Petersen M et al (2000) The normal response to prolonged passive head up tilt testing. Heart 84(5):509–514PubMedCrossRefGoogle Scholar
  26. 26.
    Ramirez-Marrero FA et al (2008) Cardiovascular dynamics in healthy subjects with differing heart rate responses to tilt. J Appl Physiol 105(5):1448–1453PubMedCrossRefGoogle Scholar
  27. 27.
    Spaak J et al (2005) Long-term bed rest-induced reductions in stroke volume during rest and exercise: cardiac dysfunction vs. volume depletion. J Appl Physiol 98(2):648–654PubMedCrossRefGoogle Scholar
  28. 28.
    Tulppo MP et al (2001) Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol-Heart Circ Physiol 280(3):H1081–H1087PubMedGoogle Scholar
  29. 29.
    Vernikos J et al (1996) Effect of standing or walking on physiological changes induced by head down bed rest: implications for spaceflight. Aviat Space Environ Med 67(11):1069–1079PubMedGoogle Scholar
  30. 30.
    Wieser M et al (2010) Response and control of heart rate via posture and movement. In: HEALTHINFGoogle Scholar
  31. 31.
    Yokoi Y, Aoki K et al (1999) Relationship between blood pressure and heart-rate variability during graded head-up tilt. Acta Physiol Scand 165(2):155PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2013

Authors and Affiliations

  • Martin Wieser
    • 1
    • 2
  • Stefan Gisler
    • 1
  • Amirehsan Sarabadani
    • 1
    • 2
  • Rafael M. Ruest
    • 1
  • Lilith Buetler
    • 1
    • 3
  • Heike Vallery
    • 1
    • 4
  • Verena Klamroth-Marganska
    • 1
    • 2
  • Margret Hund-Georgiadis
    • 5
  • Morena Felder
    • 5
  • Josef L. Schoenberger
    • 3
  • Clemens Gutknecht
    • 6
  • Robert Riener
    • 1
    • 2
  1. 1.Sensory-Motor Systems Lab, Department of Health Science and Technologies (HEST), Institute of Robotics and Intelligent Systems (IRIS)ETH ZurichZurichSwitzerland
  2. 2.Medical Faculty, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
  3. 3.Center for Neurological RehabilitationHELIOS Clinic ZihlschlachtZihlschlachtSwitzerland
  4. 4.BioMechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  5. 5.Department of NeurologyZuercher Hoehenklinik WaldFaltigberg-WaldSwitzerland
  6. 6.Maternus Clinic for RehabilitationBad OeynhausenGermany

Personalised recommendations