Optimal features for online seizure detection

  • Lojini Logesparan
  • Alexander J. Casson
  • Esther Rodriguez-Villegas
Original Article


This study identifies characteristic features in scalp EEG that simultaneously give the best discrimination between epileptic seizures and background EEG in minimally pre-processed scalp data; and have minimal computational complexity to be suitable for online, real-time analysis. The discriminative performance of 65 previously reported features has been evaluated in terms of sensitivity, specificity, area under the sensitivity–specificity curve (AUC), and relative computational complexity, on 47 seizures (split in 2,698 2 s sections) in over 172 h of scalp EEG from 24 adults. The best performing features are line length and relative power in the 12.5–25 Hz band. Relative power has a better seizure detection performance (AUC = 0.83; line length AUC = 0.77), but is calculated after the discrete wavelet transform and is thus more computationally complex. Hence, relative power achieves the best performance for offline detection, whilst line length would be preferable for online low complexity detection. These results, from the largest systematic study of seizure detection features, aid future researchers in selecting an optimal set of features when designing algorithms for both standard offline detection and new online low computational complexity detectors.


Seizure detection Feature Online EEG Epilepsy 


  1. 1.
    Agostinho PR, Haddad S, De Lima JA, Serdijn WA, Saotome O (2008) An ultra low power CMOS pA/V transconductor and its application to wavelet filters. Analog Integr Circ Sig Process 57:19–27CrossRefGoogle Scholar
  2. 2.
    Badawy RAB, Pillay N, Jettec N, Wiebec S, Federico P (2011) A blinded comparison of continuous versus sampled review of video-EEG monitoring data. Clin Neurophysiol 122:1086–1090PubMedCrossRefGoogle Scholar
  3. 3.
    Casson AJ, Yates DC, Smith SJ, Duncan JS, Rodriguez-Villegas E (2010) Wearable electroencephalography. IEEE EMBS Mag 29:44–56Google Scholar
  4. 4.
    Casson AJ, Rodriguez-Villegas E (2011) A 60 pW gmC continuous wavelet transform circuit for portable EEG systems. J Solid-State Circuits 46:1406–1415CrossRefGoogle Scholar
  5. 5.
    DeClercq W, Vergult A, Vanrumste B, Van Paesschen W, Van Huffel S (2006) Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng 53:2583–2587CrossRefGoogle Scholar
  6. 6.
    Faul S, Temko A, Marnane W (2009) Age-independent seizure detection. In: Proceedings of the 31st international conference of IEEE Engineering Medicine Biology Society, Minnesota. IEEE, Piscataway, pp 6612–6615Google Scholar
  7. 7.
    Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593PubMedCrossRefGoogle Scholar
  8. 8.
    Gotman J, Ives JR, Gloor P (1981) Frequency content of EEG and EMG at seizure onset: possibility of removal of EMG artefact by digital filtering. Electroenceph Clin Neurophysiol 52:626–639PubMedCrossRefGoogle Scholar
  9. 9.
    Gotman J (1999) Automatic detection of seizures and spikes. J Clin Neurophysiol 16:130–140PubMedCrossRefGoogle Scholar
  10. 10.
    Greene BR, Faul S, Marnane WP, Lightbody G, Korotchikova I, Boylan GB (2008) A comparison of quantitative EEG features for neonatal seizure detection. Clin Neurophysiol 119:1248–1261PubMedCrossRefGoogle Scholar
  11. 11.
    Guerrero-Mosquera C, Trigueros AM, Fraco JI, Navia-Vàzquez A (2010) New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Biol Eng Comput 48:321–333PubMedCrossRefGoogle Scholar
  12. 12.
    Hall CW Jr, Sarkar A (2011) Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset. Med Biol Eng Comput 49:133–141PubMedCrossRefGoogle Scholar
  13. 13.
    Harreby KR, Sevcencu C, Struijik JJ (2011) Early seizure detection in rats based on vagus nerve activity. Med Biol Eng Comput 49:143–151PubMedCrossRefGoogle Scholar
  14. 14.
    Hongmin L, Yigang H, Sun Y (2008) Detection of cardiac signal characteristic point using log-domain wavelet transform circuits. Circuits Syst Signal Process 27:683–698CrossRefGoogle Scholar
  15. 15.
    Kamboh AM, Raetz M, Oweiss KG, Mason A (2007) Area-power efficient VLSI implementation of multichannel DWT for data compression in implantable neuroprosthetics. IEEE Trans Biomed Circ Syst 1:128–135CrossRefGoogle Scholar
  16. 16.
    Kelly KM, Shiaud DS, Kernd RT, Chiend JH, Yang MCK, Yandora KA, Valeriano JP, Halford JJ, Sackellares JC (2010) Assessment of a scalp EEG-based automated seizure detection system. Clin Neurphysiol 121:1832–1843CrossRefGoogle Scholar
  17. 17.
    Kim H, Rosen J (2010) Epileptic seizure detection—an AR model based algorithm for implantable device. In: Proceedings of the 32nd international conference of IEEE Engineering Medicine Biology Society, Buenos Aires. IEEE, Piscataway, p 5541Google Scholar
  18. 18.
    Koubeissi MZ, Syed TU (2011) Inpatient video-EEG monitoring: how much shall we review? Clin Neurophysiol 122:1065–1066PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhlmann L, Cook MJ, Fuller K, Grayden DB, Burkitt AN, Mareels IMY (2008) Correlation analysis of seizure detection features. In: Proceedings of the international conference on intelligent sensors, sensor networks and information processing, Sydney. IEEE, Piscataway, pp 309–314Google Scholar
  20. 20.
    Kuhlmann L, Burkitt AN, Cook MJ, Fuller K, Grayden DB, Seiderer L, Mareels IMY (2009) Seizure detection using seizure probability estimation: comparison of features used to detect seizures. Ann Biomed Eng 37:2129–2145PubMedCrossRefGoogle Scholar
  21. 21.
    Lesser RP (2009) Epilepsy: does continuous EEG monitoring improve seizure control? Nat Rev Neurol 5:581–582PubMedCrossRefGoogle Scholar
  22. 22.
    McEvoy RP, Faul S, Marnane WP (2010) Ambulatory REACT: real-time seizure detection with a DSP microprocessor. In: Proceedings of the international conference of IEEE Engineering Medicine Biology Society, Buenos Aires. IEEE, Piscataway, pp 2443–2444Google Scholar
  23. 23.
    Narasimhan S, Chiel HJ, Bhunia S (2010) Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems. IEEE Trans Biomed Circ Syst 4:1–10CrossRefGoogle Scholar
  24. 24.
    Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guerit J, Hinrichs H, Ikeda A, Luccas FJC, Rappelsburger P (1998) IFCN standards for digital recording of clinical EEG. Electroenceph Clin Neurophysiol 106:259–261PubMedCrossRefGoogle Scholar
  25. 25.
    O’Donnell RD, Berkhout J, Adey WR (1974) Contamination of scalp EEG spectrum during contraction of cranio-facial muscles. Electroencephalogr Clin Neurophysiol 37:145–151PubMedCrossRefGoogle Scholar
  26. 26.
    Raghunathan S, Gupta SK, Markandeya HS, Roya K, Irazoqui PP (2010) A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications. J Neurosci Methods 1:106–117CrossRefGoogle Scholar
  27. 27.
    Shiau D, Halford JJ, Kelly KM, Kern RT, Inman M, Chien J, Pardalos PM, Yang MCK, Sackellares JC (2010) Signal regularity-based automated seizure detection system for scalp EEG monitoring. Cybern Syst Anal 46:922–935PubMedCrossRefGoogle Scholar
  28. 28.
    Sisodiya S (2007) Etiology and management of refractory epilepsies. Nat Clin Pract Neuro 3:320–330CrossRefGoogle Scholar
  29. 29.
    Tito M, Cabrerizo M, Ayala M, Jayakar P, Adjouadi M (2009) Seizure detection: an assessment of time- and frequency-based features in a unified two-dimensional decisional space using nonlinear decision functions. J Clin Neurophysiol 26:381–391PubMedCrossRefGoogle Scholar
  30. 30.
    van Putten MJAM, Kind T, Visser F, Lagerburg V (2005) Detecting temporal lobe seizures from scalp EEG recordings: a comparison of various features. Clin Neurophysiol 116:2480–2489PubMedCrossRefGoogle Scholar
  31. 31.
    Vergult A, De Clercq Q, Palmini A, Vanrumste B, Dupont P, Van Huffel S, Van Paesschen W (2007) Improving the Interpretation of Ictal Scalp EEG: BSS-CCA algorithm for muscle artifact removal. Epilepsia 48:950–958PubMedCrossRefGoogle Scholar
  32. 32.
    Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. J Solid-State Circuits 45:804–816CrossRefGoogle Scholar
  33. 33.
    Wang A, Chandrakasan AP (2005) A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J Solid-State Circuits 40:310–319CrossRefGoogle Scholar
  34. 34.
    Zandi AS, Javidan M, Dumont GA, Tafreshi R (2010) Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans Biomed Eng 57:1639–1651PubMedCrossRefGoogle Scholar
  35. 35.
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMedGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • Lojini Logesparan
    • 1
  • Alexander J. Casson
    • 1
  • Esther Rodriguez-Villegas
    • 1
  1. 1.Electrical and Electronic Engineering DepartmentImperial College LondonLondonUK

Personalised recommendations