Advertisement

Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques?

  • William I. Jay
  • Ranjith S. WijesingheEmail author
  • Brain D. Dolasinski
  • Bradley J. Roth
Original Article

Abstract

The action currents of a dendrite, peripheral nerve or skeletal muscle create their own magnetic field. Many investigators have attempted to detect neural and dendritic currents directly using magnetic resonance imaging that can cause the phase of the spins to change. Our goal in this paper is to use the calculated magnetic field of a dendrite to estimate the resulting phase shift in the magnetic resonance signal. The field produced by a dense collection of simultaneously active dendrites may be just detectable under the most ideal circumstances, but in almost every realistic case the field cannot be detected using current MRI technology.

Keywords

MRI Action currents Phase shift Dendrite Brain 

Notes

Acknowledgments

This research was supported by the National Institutes of Health grant R01EB008421 and the Indiana Academy of Science.

References

  1. 1.
    Bandettini PA, Petridou N, Boduraka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Reson 29:65–88CrossRefGoogle Scholar
  2. 2.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedCrossRefGoogle Scholar
  3. 3.
    Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak transient magnetic field changes. Magn Reson Med 47:1052–1058PubMedCrossRefGoogle Scholar
  4. 4.
    Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current-induced magnetic resonance phase imaging. J Magn Reson 137:265–271PubMedCrossRefGoogle Scholar
  5. 5.
    Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318Google Scholar
  6. 6.
    Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage 39:87–106PubMedCrossRefGoogle Scholar
  7. 7.
    Cassara AM, Maraviglia B (2008) Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage 41:1228–1241PubMedCrossRefGoogle Scholar
  8. 8.
    Chu R, de Zwart J, van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn JH (2004) Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. Neuroimage 23:1059–1067PubMedCrossRefGoogle Scholar
  9. 9.
    Gielen FLH, Roth BJ, Wikswo JP (1986) Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans Biomed Eng 33:910–921PubMedCrossRefGoogle Scholar
  10. 10.
    Gielen FLH, Friedman RN, Wikswo JP (1991) In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. J Gen Physiol 98:1043–1061PubMedCrossRefGoogle Scholar
  11. 11.
    Hagberg GE, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Med 24:483–493Google Scholar
  12. 12.
    Hennig J, Zhong K, Speck O (2008) MR-encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 39:310–317CrossRefGoogle Scholar
  13. 13.
    Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186PubMedCrossRefGoogle Scholar
  14. 14.
    Kamei H, Iramina K, Yoshlkawa K, Ueno S (1999) Neuronal current distribution imaging using magnetic resonance. IEEE Trans Magn 35:4109–4111CrossRefGoogle Scholar
  15. 15.
    Kaufman L, Kaufman JH, Wang J-Z (1991) On cortical folds and neuromagnetic fields. Electroenceph Clin Neurophysiol 79:211–229PubMedCrossRefGoogle Scholar
  16. 16.
    Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conduction sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50:40–49PubMedCrossRefGoogle Scholar
  17. 17.
    Kraus RH, Volegov P, Matlachov A, Espy M (2008) Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage. 39:310–317PubMedCrossRefGoogle Scholar
  18. 18.
    Kwong K, Brady T, Rosen B (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  19. 19.
    Nunez PL, Srinivasan R (2006) Electric Fields of the Brain the Neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  20. 20.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependence on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  21. 21.
    Paley MNJ, Chow LS, Whitby EW, Cook GG (2009) Modeling of axonal fields in the optic nerve for direct MR detection studies. Image Vision Comput 27:331–341CrossRefGoogle Scholar
  22. 22.
    Park TS, Lee SY (2007) Effects of neuronal magnetic field on MRI: Numerical analysis with axon and dendrite models. NeuroImage 35:531–538PubMedCrossRefGoogle Scholar
  23. 23.
    Roth BJ, Wikswo JP (1985) The magnetic field of a single nerve axon: a comparison of theory and experiment. Biophys J 48:93–109PubMedCrossRefGoogle Scholar
  24. 24.
    Sundaram P, Wells WM, Mulkern RV, Bubrick EJ, Bromfield EB, Munch M, Orbach DB (2010) Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med 64:1728–1738PubMedCrossRefGoogle Scholar
  25. 25.
    Swinney KR, Wikswo JP (1980) A calculation of the magnetic field of a nerve action potential. Biophys J 32:719–732PubMedCrossRefGoogle Scholar
  26. 26.
    Truong TK, Song AW (2006) Finding neuroelectric activity under magnetic field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc Natl Acad Sci USA 103:12598–12601PubMedCrossRefGoogle Scholar
  27. 27.
    van Egeraat JM, Friedman RN, Wikswo JP (1990) Magnetic field of a single muscle fiber: First measurement and a core conductor model. Biophys J 57:663–667PubMedCrossRefGoogle Scholar
  28. 28.
    van Egeraat JM, Wikswo JP (1993) A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J 64:1287–1298PubMedCrossRefGoogle Scholar
  29. 29.
    van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP (1993) The biomagnetic signature of a crushed axon: A comparison of theory and experiment. Biophys J 64:1299–1305PubMedCrossRefGoogle Scholar
  30. 30.
    Wijesinghe RS, Gielen FLH, Wikswo JP (1991) A model for compound action potentials and currents in a nerve bundle III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann Biomed Eng 18:97–121CrossRefGoogle Scholar
  31. 31.
    Wijesinghe RS, Roth BJ (2009) Detection of peripheral nerve and skeletal muscle action currents using magnetic resonance imaging. Ann Biomed Eng 37(11):2402–2406PubMedCrossRefGoogle Scholar
  32. 32.
    Wikswo JP, van Egeraat JM (1991) Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J Clin Neurophysiol 8:170–188PubMedCrossRefGoogle Scholar
  33. 33.
    Wikswo JP, Barach JP, Freeman JA (1980) Magnetic field of a nerve impulse: First measurements. Science 208:53–55PubMedCrossRefGoogle Scholar
  34. 34.
    Wikswo JP, Henry WP, Freidman RN, Kilroy WA, Wijesinghe RS, van Egeraat JM, Milek MA (1990) Intraoperative recording of the magnetic field of a human nerve. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 137–140Google Scholar
  35. 35.
    Woosley JK, Roth BJ, Wikswo JP (1985) The magnetic field of a single axon: a volume conductor model. Math Biosci 76:1–36CrossRefGoogle Scholar
  36. 36.
    Xue X, Chen X, Grabowski T, Xiong J (2009) Direct MRI mapping of neuronal activity evoked by electrical stimulation of the median nerve at the right wrist. Magn Reson Med 61:1073–1082PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • William I. Jay
    • 1
  • Ranjith S. Wijesinghe
    • 1
    Email author
  • Brain D. Dolasinski
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Department of Physics and AstronomyBall State UniversityMuncieUSA
  2. 2.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations