Medical & Biological Engineering & Computing

, Volume 50, Issue 4, pp 359–372 | Cite as

Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep

  • Sara Mariani
  • Elena Manfredini
  • Valentina Rosso
  • Andrea Grassi
  • Martin O. Mendez
  • Alfonso Alba
  • Matteo Matteucci
  • Liborio Parrino
  • Mario G. Terzano
  • Sergio Cerutti
  • Anna M. Bianchi
Original Article

Abstract

This study aims to develop an automatic detector of the A phases of the cyclic alternating pattern, periodic activity that generally occurs during non-REM (NREM) sleep. Eight polysomnographic recordings from healthy subjects were examined. From EEG recordings, five band descriptors, an activity descriptor and a variance descriptor were extracted and used to train different machine-learning algorithms. A visual scoring provided by an expert clinician was used as golden standard. Four alternative mathematical machine-learning techniques were implemented: (1) discriminant classifier, (2) support vector machines, (3) adaptive boosting, and (4) supervised artificial neural network. The results of the classification, compared with the visual analysis, showed average accuracies equal to 84.9 and 81.5% for the linear discriminant and the neural network, respectively, while AdaBoost had a slightly lower accuracy, equal to 79.4%. The SVM leads to accuracy of 81.9%. The performance achieved by the automatic classification is encouraging, since an efficient automatic classifier would benefit the practice in everyday clinics, preventing the physician from the time-consuming activity of the visually scoring of the sleep microstructure over whole 8-h sleep recordings. Finally, the classification based on learning algorithms would provide an objective criterion, overcoming the problems of inter-scorer disagreement.

Keywords

Sleep Cyclic alternating pattern Neural networks Support vector machines Machine learning 

Supplementary material

11517_2012_881_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)

References

  1. 1.
    Barcaro U, Bonanni E, Maestri M, Murri L, Parrino L, Terzano MG (2004) A general automatic method for the analysis of NREM sleep microstructure. Sleep Med 5:567–576PubMedCrossRefGoogle Scholar
  2. 2.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121CrossRefGoogle Scholar
  3. 3.
    Chervin RD (2011) Engineering better sleep. Med Biol Eng Comput 49:623. doi:10.1007/s11517-011-0777-4 PubMedCrossRefGoogle Scholar
  4. 4.
    Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New YorkGoogle Scholar
  5. 5.
    Eisensehr I, Parrino L, Noachtar S, Smerieri A, Terzano MG (2001) Sleep in Lennox–Gastaut syndrome: the role of the cyclic alternating pattern (CAP) in the gate control of clinical seizures and generalized polyspikes. Epilepsy Res 46:241–250PubMedCrossRefGoogle Scholar
  6. 6.
    El-Ad B, Chervin RD (2000) The case of a missing PLM. Sleep 23:450–451PubMedGoogle Scholar
  7. 7.
    Ferri R, Bruni O, Miano S, Smerieri A, Spruyt K, Terzano MG (2005) Inter-rater reliability of sleep cyclic alternating pattern (CAP) scoring and validation of a new computer-assisted CAP scoring method. Clin Neurophysiol 116:696–707PubMedCrossRefGoogle Scholar
  8. 8.
    Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914. doi:10.1093/bioinformatics/16.10.906 PubMedCrossRefGoogle Scholar
  9. 9.
    Gharieb RR (2001) Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter. Med Biol Eng Comput 39:237. doi:10.1007/BF02344808 PubMedCrossRefGoogle Scholar
  10. 10.
    Gwet K (2002) Inter-rater reliability: dependency on trait prevalence and marginal homogeneity. Stat Methods Inter Rater Reliab Assess 2Google Scholar
  11. 11.
    Haba-Rubio J, Staner L, Macher JP (2002) Periodic arousals or periodic limb movements during sleep? Sleep Med 3:517–520PubMedCrossRefGoogle Scholar
  12. 12.
    Halász P, Terzano MG, Parrino L (2002) Spike-wave discharge and the microstructure of sleep–wake continuum in idiopathic generalised epilepsy. Neurophysiol Clin 32:38–53PubMedCrossRefGoogle Scholar
  13. 13.
    Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29:306–310. doi:10.1016/0013-4694(70)90143-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Iber C, Ancoli-Israel S, Chesson A, et al. (2007) The AASM manual for scoring of sleep and associated events: rules, terminology and technical specifications, 1st edn. American Academy of Sleep Medicine, Westchester, ILGoogle Scholar
  15. 15.
    Kato T, Montplaisir JY, Guitard F, Sessle BJ, Lund JP, Lavigne GJ (2003) Evidence that experimentally induced sleep bruxism is a consequence of transient arousal. J Dent Res 82:284–288PubMedCrossRefGoogle Scholar
  16. 16.
    Largo R, Munteanu C, Rosa A (2005) CAP event detection by wavelets and GA tuning. In: Proceedings of 2005 IEEE international workshop on intelligent signal processing, pp 44–48Google Scholar
  17. 17.
    Macqueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297Google Scholar
  18. 18.
    Mariani S, Manfredini E, Rosso V, Mendez MO, Bianchi AM, Matteucci M, Terzano MG, Cerutti S, Parrino L (2011) Characterization of A phases during the cyclic alternating pattern of sleep. Clin Neurophysiol 122(10):2016–2024PubMedCrossRefGoogle Scholar
  19. 19.
    Navona C, Barcaro U, Bonanni E, Di Martino F, Maestri M, Murri L (2002) An automatic method for the recognition and classification of the A-phases of the cyclic alternating pattern. Clin Neurophysiol 113:1826–1831PubMedCrossRefGoogle Scholar
  20. 20.
    Parrino L, Boselli M, Buccino GP, Spaggiari MC, Di Giovanni G, Terzano MG (1996) The cyclic alternating pattern plays a gate-control on periodic limb movements during non-rapid eye movement sleep. J Clin Neurophysiol 13:314–323PubMedCrossRefGoogle Scholar
  21. 21.
    Pearlmutter BA (1990) Dynamic recurrent neural networks. School of Computer Science, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  22. 22.
    Principe JC (2010) Information theoretic learning: Renyis entropy and kernel perspectives. In: Principe JC (ed) Information science and statistics. Springer, BerlinGoogle Scholar
  23. 23.
    Rechtscahffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. National Institutes of Health Publications 204Google Scholar
  24. 24.
    Rosa A, Alves GR, Brito M, Lopes MC, Tufik S (2006) Visual and automatic cyclic alternating pattern (CAP) scoring: inter-rater reliability study. Arq Neuropsiquiatr 64Google Scholar
  25. 25.
    Terzano MG, Parrino L, Spaggiari MC, Palomba V, Rossi M, Smerieri A (2003) CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin Neurophysiol 114:1715–1723PubMedCrossRefGoogle Scholar
  26. 26.
    Terzano MG, Parrino L, Sherieri A, Chervin R, Chokroverty S, Guilleminault C, Hirshkowitz M, Mahowald M, Moldofsky H, Rosa A, Thomas R, Walters A (2001) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 2:537–553PubMedCrossRefGoogle Scholar
  27. 27.
    Terzano MG, Parrino L, Boselli M, Spaggiari MC, Di Giovanni G (1996) Polysomnographic analysis of arousal responses in obstructive sleep apnea syndrome by means of the cyclic alternating pattern. J Clin Neurophysiol 13:145–155PubMedCrossRefGoogle Scholar
  28. 28.
    Terzano MG, Parrino L, Anelli S, Halasz P (1989) Modulation of generalized spike-and-wave discharges during sleep by cyclic alternating pattern. Epilepsia 30:772–781PubMedCrossRefGoogle Scholar
  29. 29.
    Tong S, Koller D (2002) Support vector machine active learning with applications to text classification. J Mach Learn Res 2:45–66Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  • Sara Mariani
    • 1
  • Elena Manfredini
    • 1
  • Valentina Rosso
    • 2
  • Andrea Grassi
    • 2
  • Martin O. Mendez
    • 3
  • Alfonso Alba
    • 3
  • Matteo Matteucci
    • 4
  • Liborio Parrino
    • 2
  • Mario G. Terzano
    • 2
  • Sergio Cerutti
    • 1
  • Anna M. Bianchi
    • 1
  1. 1.Department of Biomedical EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Department of Neurology, Sleep Disorders CenterUniversity of ParmaParmaItaly
  3. 3.Department of ElectronicsUniversidad Autonoma de San Luis PotosiSan Luis PotosìMexico
  4. 4.Department of Information EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations