Medical & Biological Engineering & Computing

, Volume 50, Issue 3, pp 289–296 | Cite as

Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

  • Jing Jin
  • Eric W. Sellers
  • Xingyu Wang
Original Article


Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects.


Brain–computer interface Target to target interval P300 Flash pattern 


  1. 1.
    Allison BZ, Neuper C (2010) Could anyone use a BCI? (B + H)CI: the human in brain-computer interfaces and the brain in human–computer interaction, Springer. pp 35–54Google Scholar
  2. 2.
    Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59(2):127–140PubMedCrossRefGoogle Scholar
  3. 3.
    Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kuber A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 388:297–298CrossRefGoogle Scholar
  4. 4.
    Boord P, Craig A, Tran Y, Nguyen H (2010) Discrimination of left and right leg motor imagery for brain-computer interfaces. Med Biol Eng Comput 48(4):343–350PubMedCrossRefGoogle Scholar
  5. 5.
    Brunner C, Billinger M, Vidaurre C, Neuper C (2011) A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interface. Med Biol Eng Comput 49(11):1337–1346PubMedCrossRefGoogle Scholar
  6. 6.
    Dal Seno, Matteucci M, Mainardil L (2010) Online detection of P300 and error potentials in a BCI speller. Comput Intell Neurosci 307254Google Scholar
  7. 7.
    Dias NS, Kamrunnahar M, Mendes PM, Schiff SJ, Correia JH (2010) Feature selection on movement imagery discrimination and attention detection. Med Biol Eng Comput 48(4):331–341PubMedCrossRefGoogle Scholar
  8. 8.
    Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523PubMedCrossRefGoogle Scholar
  9. 9.
    Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39(3):388–396PubMedCrossRefGoogle Scholar
  10. 10.
    Guger C, Daban S, Sellers EW, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain–computer interface (BCI). Neurosci Lett 462(1):94–98PubMedCrossRefGoogle Scholar
  11. 11.
    Hill J, Farquhar J, Martens S, Bießmann F, Schölkopf B (2008) Effects of stimulus type and of error-correcting code design on bci speller performance: NIPS [on line].
  12. 12.
    Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Meth 167(1):115–125CrossRefGoogle Scholar
  13. 13.
    Horki P, Solis-Escalante T, Neuper C, Muller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a DOF artificial upper limb. Med Biol Eng Comput 49(5):567–577PubMedCrossRefGoogle Scholar
  14. 14.
    Jansen BH, Allam A, Kota P, Lachance K, Osho A, Sundarean K (2004) An exploratory study of factors affecting single trial P300 detection. IEEE Trans Biomed Eng 51(6):975–978PubMedCrossRefGoogle Scholar
  15. 15.
    Jin J, Allison BZ, Brunner C, Wang B, Wang XY, Zhang JH, Neuper C, Pfurtscheller G (2010) P300 Chinese imput system based on bayesian LDA. Biomed Tech 55(1):5–18CrossRefGoogle Scholar
  16. 16.
    Jin J, Horki P, Brunner C, Wang XY, Neuper C, Pfurtscheller G (2010) A new P300 stimulus presentation pattern for EEG-based spelling systems. Biomed Tech 55(4):203–210CrossRefGoogle Scholar
  17. 17.
    Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) Optimized stimulus presentation patterns for an event-related potential EEG-based brain computer interface. Med Biol Eng Comput 49(2):181–191PubMedCrossRefGoogle Scholar
  18. 18.
    Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) Adaptive P300 based control system. J Neural Eng 8(3):036006PubMedCrossRefGoogle Scholar
  19. 19.
    Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14(3):166–185PubMedCrossRefGoogle Scholar
  20. 20.
    Kolev V, Demiralp T, Yordanova J, Ademoglu A, Isoglu-Alkaç U (1997) Time-frequency analysis reveals multiple functional components during oddball P300. NeuroReport 8(8):2061–2065PubMedCrossRefGoogle Scholar
  21. 21.
    Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Meth 167(1):15–21CrossRefGoogle Scholar
  22. 22.
    Lei X, Yang P, Yao DZ (2009) An empirical bayesian framework for brain computer interface. IEEE Trans Neural Syst Rehabil Eng 17(6):521–529PubMedCrossRefGoogle Scholar
  23. 23.
    Lenhardt A, Kaper M, Ritter HJ (2008) An adaptive P300-based online brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 16(2):121–130PubMedCrossRefGoogle Scholar
  24. 24.
    Martens SMM, Hill NJ, Farquhar J, Scholkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6(2):026003PubMedCrossRefGoogle Scholar
  25. 25.
    McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR (2011) The P300-based brain–computer interface (BCI): effects of stimulus rate. Clin Neurophysiol 122(4):731–737PubMedCrossRefGoogle Scholar
  26. 26.
    Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 9(3):283–288PubMedCrossRefGoogle Scholar
  27. 27.
    Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134CrossRefGoogle Scholar
  28. 28.
    Quitadamo LR, Marciani MG, Cardarilli GC, Bianchi L (2008) Describing different brain computer interface systems through a unique model: a UML implementation. Neuroinformatics 6(2):81–96PubMedCrossRefGoogle Scholar
  29. 29.
    Quitadamo LR, Abbafati M, Cardarilli GC, Mattia D, Cincotti F, Babiloni F, Marciani MG, Bianchi L (2012) Evaluation of the performance of different P300 based brain-computer interface by means of the efficiency metric. J Neurosci Methods 203(2):361–368PubMedCrossRefGoogle Scholar
  30. 30.
    Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6(4):046011PubMedCrossRefGoogle Scholar
  31. 31.
    Salvaris M, Sepulveda F (2009) Perceptual Errors in the Farwell and Donchin Matrix Speller. 4th international conference IEEE/EMBS Antalya, April, 275–78Google Scholar
  32. 32.
    Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548PubMedCrossRefGoogle Scholar
  33. 33.
    Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252PubMedCrossRefGoogle Scholar
  34. 34.
    Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120PubMedCrossRefGoogle Scholar
  35. 35.
    Vidal jj (1973) Toward direct brain-computer communication. Annu Rev Biophs Bioeng 2:157–180CrossRefGoogle Scholar
  36. 36.
    Xu N, Gao XR, Hong B, Miao XB, Gao SK, Yang FH (2004) BCI competition 2003: data Set IIb: Enhancing P300 wave detection using ICA based subspace projections for BCI applications. IEEE Trans Biomed Eng 51(6):1067–1072PubMedCrossRefGoogle Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2012

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Brain–Computer Interface Laboratory, Department of PsychologyEast Tennessee State UniversityJohnsonUSA

Personalised recommendations